llama-stack-mirror/src/llama_stack_api/scoring.py
Charlie Doern a078f089d9
Some checks failed
Integration Tests (Replay) / generate-matrix (push) Successful in 3s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 1s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Test Llama Stack Build / generate-matrix (push) Successful in 5s
Python Package Build Test / build (3.12) (push) Failing after 4s
API Conformance Tests / check-schema-compatibility (push) Successful in 12s
Test llama stack list-deps / generate-matrix (push) Successful in 29s
Test Llama Stack Build / build-single-provider (push) Successful in 33s
Test llama stack list-deps / list-deps-from-config (push) Successful in 32s
UI Tests / ui-tests (22) (push) Successful in 39s
Test Llama Stack Build / build (push) Successful in 39s
Test llama stack list-deps / show-single-provider (push) Successful in 46s
Python Package Build Test / build (3.13) (push) Failing after 44s
Test External API and Providers / test-external (venv) (push) Failing after 44s
Vector IO Integration Tests / test-matrix (push) Failing after 56s
Test llama stack list-deps / list-deps (push) Failing after 47s
Unit Tests / unit-tests (3.12) (push) Failing after 1m42s
Unit Tests / unit-tests (3.13) (push) Failing after 1m55s
Test Llama Stack Build / build-ubi9-container-distribution (push) Successful in 2m0s
Test Llama Stack Build / build-custom-container-distribution (push) Successful in 2m2s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 2m42s
Pre-commit / pre-commit (push) Successful in 5m17s
fix: rename llama_stack_api dir (#4155)
# What does this PR do?

the directory structure was src/llama-stack-api/llama_stack_api

instead it should just be src/llama_stack_api to match the other
packages.

update the structure and pyproject/linting config

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2025-11-13 15:04:36 -08:00

93 lines
2.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Protocol, runtime_checkable
from pydantic import BaseModel
from llama_stack_api.schema_utils import json_schema_type, webmethod
from llama_stack_api.scoring_functions import ScoringFn, ScoringFnParams
from llama_stack_api.version import LLAMA_STACK_API_V1
# mapping of metric to value
ScoringResultRow = dict[str, Any]
@json_schema_type
class ScoringResult(BaseModel):
"""
A scoring result for a single row.
:param score_rows: The scoring result for each row. Each row is a map of column name to value.
:param aggregated_results: Map of metric name to aggregated value
"""
score_rows: list[ScoringResultRow]
# aggregated metrics to value
aggregated_results: dict[str, Any]
@json_schema_type
class ScoreBatchResponse(BaseModel):
"""Response from batch scoring operations on datasets.
:param dataset_id: (Optional) The identifier of the dataset that was scored
:param results: A map of scoring function name to ScoringResult
"""
dataset_id: str | None = None
results: dict[str, ScoringResult]
@json_schema_type
class ScoreResponse(BaseModel):
"""
The response from scoring.
:param results: A map of scoring function name to ScoringResult.
"""
# each key in the dict is a scoring function name
results: dict[str, ScoringResult]
class ScoringFunctionStore(Protocol):
def get_scoring_function(self, scoring_fn_id: str) -> ScoringFn: ...
@runtime_checkable
class Scoring(Protocol):
scoring_function_store: ScoringFunctionStore
@webmethod(route="/scoring/score-batch", method="POST", level=LLAMA_STACK_API_V1)
async def score_batch(
self,
dataset_id: str,
scoring_functions: dict[str, ScoringFnParams | None],
save_results_dataset: bool = False,
) -> ScoreBatchResponse:
"""Score a batch of rows.
:param dataset_id: The ID of the dataset to score.
:param scoring_functions: The scoring functions to use for the scoring.
:param save_results_dataset: Whether to save the results to a dataset.
:returns: A ScoreBatchResponse.
"""
...
@webmethod(route="/scoring/score", method="POST", level=LLAMA_STACK_API_V1)
async def score(
self,
input_rows: list[dict[str, Any]],
scoring_functions: dict[str, ScoringFnParams | None],
) -> ScoreResponse:
"""Score a list of rows.
:param input_rows: The rows to score.
:param scoring_functions: The scoring functions to use for the scoring.
:returns: A ScoreResponse object containing rows and aggregated results.
"""
...