llama-stack-mirror/tests/integration/agents/test_openai_responses.py
Anastas Stoyanovsky 7a9b7ecdc2 Wire through parallel_tool_calls to Responses API
Signed-off-by: Anastas Stoyanovsky <astoyano@redhat.com>
2025-11-18 08:51:34 -05:00

777 lines
29 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from openai import BadRequestError, OpenAI
from llama_stack.core.library_client import LlamaStackAsLibraryClient
@pytest.mark.parametrize(
"stream",
[
True,
False,
],
)
@pytest.mark.parametrize(
"tools",
[
[],
[
{
"type": "function",
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
}
],
],
)
def test_responses_store(compat_client, text_model_id, stream, tools):
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses.delete() exists in llama-stack-client")
message = "What's the weather in Tokyo?" + (
" YOU MUST USE THE get_weather function to get the weather." if tools else ""
)
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": message,
}
],
stream=stream,
tools=tools,
)
if stream:
# accumulate the streamed content
content = ""
response_id = None
for chunk in response:
if response_id is None:
response_id = chunk.response.id
if chunk.type == "response.completed":
response_id = chunk.response.id
output_type = chunk.response.output[0].type
if output_type == "message":
content = chunk.response.output[0].content[0].text
else:
response_id = response.id
output_type = response.output[0].type
if output_type == "message":
content = response.output[0].content[0].text
# test retrieve response
retrieved_response = compat_client.responses.retrieve(response_id)
assert retrieved_response.id == response_id
assert retrieved_response.model == text_model_id
assert retrieved_response.output[0].type == output_type, retrieved_response
if output_type == "message":
assert retrieved_response.output[0].content[0].text == content
# Delete the response
delete_response = compat_client.responses.delete(response_id)
assert delete_response is None
with pytest.raises(BadRequestError):
compat_client.responses.retrieve(response_id)
def test_list_response_input_items(compat_client, text_model_id):
"""Test the new list_openai_response_input_items endpoint."""
message = "What is the capital of France?"
# Create a response first
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": message,
}
],
stream=False,
)
response_id = response.id
# Test the new list input items endpoint
input_items_response = compat_client.responses.input_items.list(response_id=response_id)
# Verify the structure follows OpenAI API spec
assert input_items_response.object == "list"
assert hasattr(input_items_response, "data")
assert isinstance(input_items_response.data, list)
assert len(input_items_response.data) > 0
# Verify the input item contains our message
input_item = input_items_response.data[0]
assert input_item.type == "message"
assert input_item.role == "user"
assert message in str(input_item.content)
def test_list_response_input_items_with_limit_and_order(openai_client, client_with_models, text_model_id):
"""Test the list input items endpoint with limit and order parameters."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
# Create a response with multiple input messages to test limit and order
# Use distinctive content to make order verification more reliable
messages = [
{"role": "user", "content": "Message A: What is the capital of France?"},
{"role": "assistant", "content": "The capital of France is Paris."},
{"role": "user", "content": "Message B: What about Spain?"},
{"role": "assistant", "content": "The capital of Spain is Madrid."},
{"role": "user", "content": "Message C: And Italy?"},
]
response = client.responses.create(
model=text_model_id,
input=messages,
stream=False,
)
response_id = response.id
# First get all items to establish baseline
all_items_response = client.responses.input_items.list(response_id=response_id)
assert all_items_response.object == "list"
total_items = len(all_items_response.data)
assert total_items == 5 # Should have all 5 input messages
# Test 1: Limit parameter - request only 2 items
limited_response = client.responses.input_items.list(response_id=response_id, limit=2)
assert limited_response.object == "list"
assert len(limited_response.data) == min(2, total_items) # Should be exactly 2 or total if less
# Test 2: Edge case - limit larger than available items
large_limit_response = client.responses.input_items.list(response_id=response_id, limit=10)
assert large_limit_response.object == "list"
assert len(large_limit_response.data) == total_items # Should return all available items
# Test 3: Edge case - limit of 1
single_item_response = client.responses.input_items.list(response_id=response_id, limit=1)
assert single_item_response.object == "list"
assert len(single_item_response.data) == 1
# Test 4: Order parameter - ascending vs descending
asc_response = client.responses.input_items.list(response_id=response_id, order="asc")
desc_response = client.responses.input_items.list(response_id=response_id, order="desc")
assert asc_response.object == "list"
assert desc_response.object == "list"
assert len(asc_response.data) == len(desc_response.data) == total_items
# Verify order is actually different (if we have multiple items)
if total_items > 1:
# First item in asc should be last item in desc (reversed order)
first_asc_content = str(asc_response.data[0].content)
first_desc_content = str(desc_response.data[0].content)
last_asc_content = str(asc_response.data[-1].content)
last_desc_content = str(desc_response.data[-1].content)
# The first item in asc should be the last item in desc (and vice versa)
assert first_asc_content == last_desc_content, (
f"Expected first asc ({first_asc_content}) to equal last desc ({last_desc_content})"
)
assert last_asc_content == first_desc_content, (
f"Expected last asc ({last_asc_content}) to equal first desc ({first_desc_content})"
)
# Verify the distinctive content markers are in the right positions
assert "Message A" in first_asc_content, "First item in ascending order should contain 'Message A'"
assert "Message C" in first_desc_content, "First item in descending order should contain 'Message C'"
# Test 5: Combined limit and order
combined_response = client.responses.input_items.list(response_id=response_id, limit=3, order="desc")
assert combined_response.object == "list"
assert len(combined_response.data) == min(3, total_items)
# Test 6: Verify combined response has correct order for first few items
if total_items >= 3:
# Should get the last 3 items in descending order (most recent first)
assert "Message C" in str(combined_response.data[0].content), "First item should be most recent (Message C)"
# The exact second and third items depend on the implementation, but let's verify structure
for item in combined_response.data:
assert hasattr(item, "content")
assert hasattr(item, "role")
assert hasattr(item, "type")
assert item.type == "message"
assert item.role in ["user", "assistant"]
@pytest.mark.skip(reason="Tool calling is not reliable.")
def test_function_call_output_response(openai_client, client_with_models, text_model_id):
"""Test handling of function call outputs in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
# First create a response that triggers a function call
response = client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "what's the weather in tokyo? You MUST call the `get_weather` function to find out.",
}
],
tools=[
{
"type": "function",
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
}
],
stream=False,
)
# Verify we got a function call
assert response.output[0].type == "function_call"
call_id = response.output[0].call_id
# Now send the function call output as a follow-up
response2 = client.responses.create(
model=text_model_id,
input=[{"type": "function_call_output", "call_id": call_id, "output": "sunny and warm"}],
previous_response_id=response.id,
stream=False,
)
# Verify the second response processed successfully
assert response2.id is not None
assert response2.output[0].type == "message"
assert (
"sunny" in response2.output[0].content[0].text.lower() or "warm" in response2.output[0].content[0].text.lower()
)
def test_function_call_output_response_with_none_arguments(openai_client, client_with_models, text_model_id):
"""Test handling of function call outputs in responses when function does not accept arguments."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
# First create a response that triggers a function call
response = client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "what's the current time? You MUST call the `get_current_time` function to find out.",
}
],
tools=[
{
"type": "function",
"name": "get_current_time",
"description": "Get the current time",
"parameters": {},
}
],
stream=False,
)
# Verify we got a function call
assert response.output[0].type == "function_call"
assert response.output[0].arguments == "{}"
_ = response.output[0].call_id
@pytest.mark.parametrize("stream", [True, False])
def test_input_safety_guardrails(compat_client, text_model_id, stream):
"""Test that input safety guardrails block inappropriate content."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
# Test with guardrail that should block inappropriate content
# Note: This test assumes guardrails are configured in the test environment
inappropriate_message = "How can I hurt someone?"
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": inappropriate_message,
}
],
stream=stream,
extra_body={"guardrails": ["llama-guard"]}, # Guardrails passed via extra_body
)
if stream:
# Input violations cause immediate refusal - only one completion chunk
final_response = None
for chunk in response:
if chunk.type == "response.completed":
final_response = chunk.response
break
assert final_response is not None
response_to_check = final_response
else:
response_to_check = response
# Check if the response contains a refusal (indicating guardrail blocked content)
assert response_to_check.output[0].type == "message"
message = response_to_check.output[0]
# Guardrail should ALWAYS block inappropriate input - expect refusal response
assert len(message.content) > 0, "Content should not be empty"
content_item = message.content[0]
assert content_item.type == "refusal", f"Expected refusal content, but got: {content_item.type}"
assert len(content_item.refusal.strip()) > 0, "Refusal message should not be empty"
@pytest.mark.parametrize("stream", [True, False])
def test_output_safety_guardrails_unsafe_content(compat_client, text_model_id, stream):
"""Test that output safety guardrails block unsafe content."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
# Use an unsafe prompt that should be blocked by guardrail evaluation
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "Describe violent content",
}
],
stream=stream,
extra_body={"guardrails": ["llama-guard"]}, # Output guardrail validation
)
if stream:
# For streaming, collect the final response
last_chunk = None
for chunk in response:
last_chunk = chunk
assert last_chunk is not None
assert last_chunk.type == "response.completed", f"Expected final chunk to be completion, got {last_chunk.type}"
response_to_check = last_chunk.response
else:
response_to_check = response
assert response_to_check.output[0].type == "message"
message = response_to_check.output[0]
assert len(message.content) > 0, "Message should have content"
content_item = message.content[0]
assert content_item.type == "refusal", (
f"Content type should be 'refusal' for unsafe output, got {content_item.type}"
)
assert len(content_item.refusal.strip()) > 0, "Refusal message should not be empty"
@pytest.mark.parametrize("stream", [True, False])
def test_output_safety_guardrails_safe_content(compat_client, text_model_id, stream):
"""Test that output safety guardrails allow safe content."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
# Use a safe prompt that should pass guardrail evaluation
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "What's your name?",
}
],
stream=stream,
extra_body={"guardrails": ["llama-guard"]}, # Output guardrail validation
)
if stream:
# For streaming, collect the final response
last_chunk = None
for chunk in response:
last_chunk = chunk
assert last_chunk is not None
assert last_chunk.type == "response.completed", f"Expected final chunk to be completion, got {last_chunk.type}"
response_to_check = last_chunk.response
else:
response_to_check = response
assert response_to_check.output[0].type == "message"
message = response_to_check.output[0]
assert len(message.content) > 0, "Message should have content"
content_item = message.content[0]
assert content_item.type == "output_text", (
f"Content type should be 'output_text' for safe output, got {content_item.type}"
)
assert len(content_item.text.strip()) > 0, "Text content should not be empty"
def test_guardrails_with_tools(compat_client, text_model_id):
"""Test that guardrails work correctly when tools are present."""
if not isinstance(compat_client, OpenAI):
pytest.skip("OpenAI client is required until responses API exists in llama-stack-client")
response = compat_client.responses.create(
model=text_model_id,
input=[
{
"role": "user",
"content": "What's the weather like? Please help me in a safe and appropriate way.",
}
],
tools=[
{
"type": "function",
"name": "get_weather",
"description": "Get the weather in a given city",
"parameters": {
"type": "object",
"properties": {
"city": {"type": "string", "description": "The city to get the weather for"},
},
},
}
],
extra_body={"guardrails": ["llama-guard"]},
stream=False,
)
# Verify response completes successfully with tools and guardrails
assert response.id is not None
assert len(response.output) > 0
# Response should be either a function call or a message
output_type = response.output[0].type
assert output_type in ["function_call", "message"]
def test_response_with_instructions(openai_client, client_with_models, text_model_id):
"""Test instructions parameter in the responses object."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
messages = [
{
"role": "user",
"content": "What is the capital of France?",
}
]
# First create a response without instructions parameter
response_w_o_instructions = client.responses.create(
model=text_model_id,
input=messages,
stream=False,
)
# Verify we have None in the instructions field
assert response_w_o_instructions.instructions is None
# Next create a response and pass instructions parameter
instructions = "You are a helpful assistant."
response_with_instructions = client.responses.create(
model=text_model_id,
instructions=instructions,
input=messages,
stream=False,
)
# Verify we have a valid instructions field
assert response_with_instructions.instructions == instructions
# Finally test instructions parameter with a previous response id
instructions2 = "You are a helpful assistant and speak in pirate language."
response_with_instructions2 = client.responses.create(
model=text_model_id,
instructions=instructions2,
input=messages,
previous_response_id=response_with_instructions.id,
stream=False,
)
# Verify instructions from previous response was not carried over to the next response
assert response_with_instructions2.instructions == instructions2
@pytest.mark.skip(reason="Tool calling is not reliable.")
def test_max_tool_calls_with_function_tools(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with function tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
max_tool_calls = 1
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
{
"type": "function",
"name": "get_time",
"description": "Get current time for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
]
# First create a response that triggers function tools
response = client.responses.create(
model=text_model_id,
input="Can you tell me the weather in Paris and the current time?",
tools=tools,
stream=False,
max_tool_calls=max_tool_calls,
)
# Verify we got two function calls and that the max_tool_calls do not affect function tools
assert len(response.output) == 2
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
assert response.output[1].type == "function_call"
assert response.output[1].name == "get_time"
assert response.output[0].status == "completed"
# Verify we have a valid max_tool_calls field
assert response.max_tool_calls == max_tool_calls
def test_max_tool_calls_invalid(openai_client, client_with_models, text_model_id):
"""Test handling of invalid max_tool_calls in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
input = "Search for today's top technology news."
invalid_max_tool_calls = 0
tools = [
{"type": "web_search"},
]
# Create a response with an invalid max_tool_calls value i.e. 0
# Handle ValueError from LLS and BadRequestError from OpenAI client
with pytest.raises((ValueError, BadRequestError)) as excinfo:
client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=invalid_max_tool_calls,
)
error_message = str(excinfo.value)
assert f"Invalid max_tool_calls={invalid_max_tool_calls}; should be >= 1" in error_message, (
f"Expected error message about invalid max_tool_calls, got: {error_message}"
)
def test_max_tool_calls_with_builtin_tools(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with built-in tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
input = "Search for today's top technology and a positive news story. You MUST make exactly two separate web search calls."
max_tool_calls = [1, 5]
tools = [
{"type": "web_search"},
]
# First create a response that triggers web_search tools without max_tool_calls
response = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
)
# Verify we got two web search calls followed by a message
assert len(response.output) == 3
assert response.output[0].type == "web_search_call"
assert response.output[0].status == "completed"
assert response.output[1].type == "web_search_call"
assert response.output[1].status == "completed"
assert response.output[2].type == "message"
assert response.output[2].status == "completed"
assert response.output[2].role == "assistant"
# Next create a response that triggers web_search tools with max_tool_calls set to 1
response_2 = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[0],
)
# Verify we got one web search tool call followed by a message
assert len(response_2.output) == 2
assert response_2.output[0].type == "web_search_call"
assert response_2.output[0].status == "completed"
assert response_2.output[1].type == "message"
assert response_2.output[1].status == "completed"
assert response_2.output[1].role == "assistant"
# Verify we have a valid max_tool_calls field
assert response_2.max_tool_calls == max_tool_calls[0]
# Finally create a response that triggers web_search tools with max_tool_calls set to 5
response_3 = client.responses.create(
model=text_model_id,
input=input,
tools=tools,
stream=False,
max_tool_calls=max_tool_calls[1],
)
# Verify we got two web search calls followed by a message
assert len(response_3.output) == 3
assert response_3.output[0].type == "web_search_call"
assert response_3.output[0].status == "completed"
assert response_3.output[1].type == "web_search_call"
assert response_3.output[1].status == "completed"
assert response_3.output[2].type == "message"
assert response_3.output[2].status == "completed"
assert response_3.output[2].role == "assistant"
# Verify we have a valid max_tool_calls field
assert response_3.max_tool_calls == max_tool_calls[1]
@pytest.mark.skip(reason="Tool calling is not reliable.")
def test_parallel_tool_calls_true(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with function tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
parallel_tool_calls = True
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
}
]
# First create a response that triggers function tools
response = client.responses.create(
model=text_model_id,
input="Get the weather in New York and in Paris",
tools=tools,
stream=False,
parallel_tool_calls=parallel_tool_calls,
)
# Verify we got two function calls and that the max_tool_calls do not affect function tools
assert len(response.output) == 2
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
assert response.output[1].type == "function_call"
assert response.output[1].name == "get_weather"
assert response.output[0].status == "completed"
# Verify we have a valid max_tool_calls field
assert response.parallel_tool_calls == parallel_tool_calls
@pytest.mark.skip(reason="Tool calling is not reliable.")
def test_parallel_tool_calls_false(openai_client, client_with_models, text_model_id):
"""Test handling of max_tool_calls with function tools in responses."""
if isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI responses are not supported when testing with library client yet.")
client = openai_client
parallel_tool_calls = False
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
}
]
# First create a response that triggers function tools
response = client.responses.create(
model=text_model_id,
input="Get the weather in New York and in Paris",
tools=tools,
stream=False,
parallel_tool_calls=parallel_tool_calls,
)
# Verify we got two function calls and that the max_tool_calls do not affect function tools
assert len(response.output) == 1
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
# Verify we have a valid max_tool_calls field
assert response.parallel_tool_calls == parallel_tool_calls