mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
215 lines
6.8 KiB
Python
215 lines
6.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
import json
|
|
from typing import AsyncGenerator
|
|
|
|
import fire
|
|
|
|
import httpx
|
|
|
|
from pydantic import BaseModel
|
|
from termcolor import cprint
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
|
|
|
from .api import * # noqa: F403
|
|
from .event_logger import EventLogger
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps):
|
|
return AgenticSystemClient(config.url)
|
|
|
|
|
|
def encodable_dict(d: BaseModel):
|
|
return json.loads(d.json())
|
|
|
|
|
|
class AgenticSystemClient(AgenticSystem):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def create_agentic_system(
|
|
self, agent_config: AgentConfig
|
|
) -> AgenticSystemCreateResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
f"{self.base_url}/agentic_system/create",
|
|
json={
|
|
"agent_config": encodable_dict(agent_config),
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
)
|
|
response.raise_for_status()
|
|
return AgenticSystemCreateResponse(**response.json())
|
|
|
|
async def create_agentic_system_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgenticSystemSessionCreateResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
response = await client.post(
|
|
f"{self.base_url}/agentic_system/session/create",
|
|
json={
|
|
"agent_id": agent_id,
|
|
"session_name": session_name,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
)
|
|
response.raise_for_status()
|
|
return AgenticSystemSessionCreateResponse(**response.json())
|
|
|
|
async def create_agentic_system_turn(
|
|
self,
|
|
request: AgenticSystemTurnCreateRequest,
|
|
) -> AsyncGenerator:
|
|
async with httpx.AsyncClient() as client:
|
|
async with client.stream(
|
|
"POST",
|
|
f"{self.base_url}/agentic_system/turn/create",
|
|
json={
|
|
"request": encodable_dict(request),
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
) as response:
|
|
async for line in response.aiter_lines():
|
|
if line.startswith("data:"):
|
|
data = line[len("data: ") :]
|
|
try:
|
|
if "error" in data:
|
|
cprint(data, "red")
|
|
continue
|
|
|
|
yield AgenticSystemTurnResponseStreamChunk(
|
|
**json.loads(data)
|
|
)
|
|
except Exception as e:
|
|
print(data)
|
|
print(f"Error with parsing or validation: {e}")
|
|
|
|
|
|
async def _run_agent(api, tool_definitions, user_prompts, attachments=None):
|
|
agent_config = AgentConfig(
|
|
model="Meta-Llama3.1-8B-Instruct",
|
|
instructions="You are a helpful assistant",
|
|
sampling_params=SamplingParams(temperature=1.0, top_p=0.9),
|
|
tools=tool_definitions,
|
|
tool_choice=ToolChoice.auto,
|
|
tool_prompt_format=ToolPromptFormat.function_tag,
|
|
)
|
|
|
|
create_response = await api.create_agentic_system(agent_config)
|
|
session_response = await api.create_agentic_system_session(
|
|
agent_id=create_response.agent_id,
|
|
session_name="test_session",
|
|
)
|
|
|
|
for content in user_prompts:
|
|
cprint(f"User> {content}", color="white", attrs=["bold"])
|
|
iterator = api.create_agentic_system_turn(
|
|
AgenticSystemTurnCreateRequest(
|
|
agent_id=create_response.agent_id,
|
|
session_id=session_response.session_id,
|
|
messages=[
|
|
UserMessage(content=content),
|
|
],
|
|
attachments=attachments,
|
|
stream=True,
|
|
)
|
|
)
|
|
|
|
async for event, log in EventLogger().log(iterator):
|
|
if log is not None:
|
|
log.print()
|
|
|
|
|
|
async def run_main(host: str, port: int):
|
|
api = AgenticSystemClient(f"http://{host}:{port}")
|
|
|
|
tool_definitions = [
|
|
BraveSearchToolDefinition(),
|
|
WolframAlphaToolDefinition(),
|
|
CodeInterpreterToolDefinition(),
|
|
]
|
|
tool_definitions += [
|
|
FunctionCallToolDefinition(
|
|
function_name="get_boiling_point",
|
|
description="Get the boiling point of a imaginary liquids (eg. polyjuice)",
|
|
parameters={
|
|
"liquid_name": ToolParamDefinition(
|
|
param_type="str",
|
|
description="The name of the liquid",
|
|
required=True,
|
|
),
|
|
"celcius": ToolParamDefinition(
|
|
param_type="str",
|
|
description="Whether to return the boiling point in Celcius",
|
|
required=False,
|
|
),
|
|
},
|
|
),
|
|
]
|
|
|
|
user_prompts = [
|
|
"Who are you?",
|
|
"what is the 100th prime number?",
|
|
"Search web for who was 44th President of USA?",
|
|
"Write code to check if a number is prime. Use that to check if 7 is prime",
|
|
"What is the boiling point of polyjuicepotion ?",
|
|
]
|
|
await _run_agent(api, tool_definitions, user_prompts)
|
|
|
|
|
|
async def run_rag(host: str, port: int):
|
|
api = AgenticSystemClient(f"http://{host}:{port}")
|
|
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
attachments = [
|
|
Attachment(
|
|
content=URL(
|
|
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
|
),
|
|
mime_type="text/plain",
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
# Alternatively, you can pre-populate the memory bank with documents for example,
|
|
# using `llama_toolchain.memory.client`. Then you can grab the bank_id
|
|
# from the output of that run.
|
|
tool_definitions = [
|
|
MemoryToolDefinition(
|
|
max_tokens_in_context=2048,
|
|
memory_bank_configs=[],
|
|
),
|
|
]
|
|
|
|
user_prompts = [
|
|
"How do I use Lora?",
|
|
"Tell me briefly about llama3 and torchtune",
|
|
]
|
|
|
|
await _run_agent(api, tool_definitions, user_prompts, attachments)
|
|
|
|
|
|
def main(host: str, port: int, rag: bool = False):
|
|
fn = run_rag if rag else run_main
|
|
asyncio.run(fn(host, port))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|