mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
187 lines
4.8 KiB
Python
187 lines
4.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from enum import Enum
|
|
|
|
from typing import List, Literal, Optional, Protocol, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
|
|
class LogProbConfig(BaseModel):
|
|
top_k: Optional[int] = 0
|
|
|
|
|
|
@json_schema_type
|
|
class QuantizationType(Enum):
|
|
bf16 = "bf16"
|
|
fp8 = "fp8"
|
|
|
|
|
|
@json_schema_type
|
|
class Fp8QuantizationConfig(BaseModel):
|
|
type: Literal[QuantizationType.fp8.value] = QuantizationType.fp8.value
|
|
|
|
|
|
@json_schema_type
|
|
class Bf16QuantizationConfig(BaseModel):
|
|
type: Literal[QuantizationType.bf16.value] = QuantizationType.bf16.value
|
|
|
|
|
|
QuantizationConfig = Annotated[
|
|
Union[Bf16QuantizationConfig, Fp8QuantizationConfig],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseEventType(Enum):
|
|
start = "start"
|
|
complete = "complete"
|
|
progress = "progress"
|
|
|
|
|
|
@json_schema_type
|
|
class ToolCallParseStatus(Enum):
|
|
started = "started"
|
|
in_progress = "in_progress"
|
|
failure = "failure"
|
|
success = "success"
|
|
|
|
|
|
@json_schema_type
|
|
class ToolCallDelta(BaseModel):
|
|
content: Union[str, ToolCall]
|
|
parse_status: ToolCallParseStatus
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseEvent(BaseModel):
|
|
"""Chat completion response event."""
|
|
|
|
event_type: ChatCompletionResponseEventType
|
|
delta: Union[str, ToolCallDelta]
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
stop_reason: Optional[StopReason] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionRequest(BaseModel):
|
|
model: str
|
|
content: InterleavedTextMedia
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
stream: Optional[bool] = False
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionResponse(BaseModel):
|
|
completion_message: CompletionMessage
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class CompletionResponseStreamChunk(BaseModel):
|
|
"""streamed completion response."""
|
|
|
|
delta: str
|
|
stop_reason: Optional[StopReason] = None
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchCompletionRequest(BaseModel):
|
|
model: str
|
|
content_batch: List[InterleavedTextMedia]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchCompletionResponse(BaseModel):
|
|
completion_message_batch: List[CompletionMessage]
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages: List[Message]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
# zero-shot tool definitions as input to the model
|
|
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
|
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
|
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
|
default=ToolPromptFormat.json
|
|
)
|
|
|
|
stream: Optional[bool] = False
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponseStreamChunk(BaseModel):
|
|
"""SSE-stream of these events."""
|
|
|
|
event: ChatCompletionResponseEvent
|
|
|
|
|
|
@json_schema_type
|
|
class ChatCompletionResponse(BaseModel):
|
|
completion_message: CompletionMessage
|
|
logprobs: Optional[List[TokenLogProbs]] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchChatCompletionRequest(BaseModel):
|
|
model: str
|
|
messages_batch: List[List[Message]]
|
|
sampling_params: Optional[SamplingParams] = SamplingParams()
|
|
|
|
# zero-shot tool definitions as input to the model
|
|
tools: Optional[List[ToolDefinition]] = Field(default_factory=list)
|
|
tool_choice: Optional[ToolChoice] = Field(default=ToolChoice.auto)
|
|
tool_prompt_format: Optional[ToolPromptFormat] = Field(
|
|
default=ToolPromptFormat.json
|
|
)
|
|
logprobs: Optional[LogProbConfig] = None
|
|
|
|
|
|
@json_schema_type
|
|
class BatchChatCompletionResponse(BaseModel):
|
|
completion_message_batch: List[CompletionMessage]
|
|
|
|
|
|
@json_schema_type
|
|
class EmbeddingsResponse(BaseModel):
|
|
embeddings: List[List[float]]
|
|
|
|
|
|
class Inference(Protocol):
|
|
@webmethod(route="/inference/completion")
|
|
async def completion(
|
|
self,
|
|
request: CompletionRequest,
|
|
) -> Union[CompletionResponse, CompletionResponseStreamChunk]: ...
|
|
|
|
@webmethod(route="/inference/chat_completion")
|
|
async def chat_completion(
|
|
self,
|
|
request: ChatCompletionRequest,
|
|
) -> Union[ChatCompletionResponse, ChatCompletionResponseStreamChunk]: ...
|
|
|
|
@webmethod(route="/inference/embeddings")
|
|
async def embeddings(
|
|
self,
|
|
model: str,
|
|
contents: List[InterleavedTextMedia],
|
|
) -> EmbeddingsResponse: ...
|