mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
110 lines
3.5 KiB
Python
110 lines
3.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
from copy import deepcopy
|
|
from dataclasses import dataclass
|
|
from functools import partial
|
|
from typing import Generator, List, Optional
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import Message, ToolPromptFormat
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
from llama_models.sku_list import resolve_model
|
|
|
|
from .config import MetaReferenceImplConfig
|
|
from .generation import Llama, model_checkpoint_dir
|
|
from .parallel_utils import ModelParallelProcessGroup
|
|
|
|
|
|
@dataclass
|
|
class InferenceArgs:
|
|
messages: List[Message]
|
|
temperature: float
|
|
top_p: float
|
|
max_gen_len: int
|
|
logprobs: bool
|
|
tool_prompt_format: ToolPromptFormat
|
|
|
|
|
|
class ModelRunner:
|
|
def __init__(self, llama):
|
|
self.llama = llama
|
|
|
|
# the `task` object is the same that is sent to `ModelParallelProcessGroup.run_inference()`
|
|
def __call__(self, task: InferenceArgs):
|
|
return self.llama.chat_completion(
|
|
task.messages,
|
|
task.temperature,
|
|
task.top_p,
|
|
task.max_gen_len,
|
|
task.logprobs,
|
|
task.tool_prompt_format,
|
|
)
|
|
|
|
|
|
def init_model_cb(config: MetaReferenceImplConfig):
|
|
llama = Llama.build(config)
|
|
return ModelRunner(llama)
|
|
|
|
|
|
class LlamaModelParallelGenerator:
|
|
"""
|
|
This abstraction exists so
|
|
- we can run model parallel code without needing to run the CLIs via torchrun
|
|
- this also enables use model parallel code within a notebook context.
|
|
|
|
A Context Manager is used to ensure that the model parallel process is started and stopped
|
|
correctly. This does make the ergonomics a little awkward, because it isn't immediately
|
|
clear at the callsite why we need to use a context manager.
|
|
"""
|
|
|
|
def __init__(self, config: MetaReferenceImplConfig):
|
|
self.config = config
|
|
self.model = resolve_model(self.config.model)
|
|
# this is a hack because Agent's loop uses this to tokenize and check if input is too long
|
|
# while the tool-use loop is going
|
|
checkpoint_dir = model_checkpoint_dir(self.model)
|
|
tokenizer_path = os.path.join(checkpoint_dir, "tokenizer.model")
|
|
self.formatter = ChatFormat(Tokenizer(tokenizer_path))
|
|
|
|
def start(self):
|
|
self.__enter__()
|
|
|
|
def stop(self):
|
|
self.__exit__(None, None, None)
|
|
|
|
def __enter__(self):
|
|
self.group = ModelParallelProcessGroup(
|
|
self.model.hardware_requirements.gpu_count,
|
|
init_model_cb=partial(init_model_cb, self.config),
|
|
)
|
|
self.group.start()
|
|
return self
|
|
|
|
def __exit__(self, exc_type, exc_value, exc_traceback):
|
|
self.group.stop()
|
|
|
|
def chat_completion(
|
|
self,
|
|
messages: List[Message],
|
|
temperature: float = 0.6,
|
|
top_p: float = 0.9,
|
|
max_gen_len: Optional[int] = None,
|
|
logprobs: bool = False,
|
|
tool_prompt_format: ToolPromptFormat = ToolPromptFormat.json,
|
|
) -> Generator:
|
|
req_obj = InferenceArgs(
|
|
messages=deepcopy(messages),
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
max_gen_len=max_gen_len,
|
|
logprobs=logprobs,
|
|
tool_prompt_format=tool_prompt_format,
|
|
)
|
|
|
|
gen = self.group.run_inference(req_obj)
|
|
yield from gen
|