mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
181 lines
5.1 KiB
Python
181 lines
5.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import asyncio
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import fire
|
|
import httpx
|
|
|
|
from llama_toolchain.core.datatypes import RemoteProviderConfig
|
|
|
|
from .api import * # noqa: F403
|
|
|
|
|
|
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:
|
|
return MemoryClient(config.url)
|
|
|
|
|
|
class MemoryClient(Memory):
|
|
def __init__(self, base_url: str):
|
|
self.base_url = base_url
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.get(
|
|
f"{self.base_url}/memory_banks/get",
|
|
params={
|
|
"bank_id": bank_id,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
d = r.json()
|
|
if not d:
|
|
return None
|
|
return MemoryBank(**d)
|
|
|
|
async def create_memory_bank(
|
|
self,
|
|
name: str,
|
|
config: MemoryBankConfig,
|
|
url: Optional[URL] = None,
|
|
) -> MemoryBank:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_banks/create",
|
|
json={
|
|
"name": name,
|
|
"config": config.dict(),
|
|
"url": url,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
d = r.json()
|
|
if not d:
|
|
return None
|
|
return MemoryBank(**d)
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
) -> None:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_bank/insert",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"documents": [d.dict() for d in documents],
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
async with httpx.AsyncClient() as client:
|
|
r = await client.post(
|
|
f"{self.base_url}/memory_bank/query",
|
|
json={
|
|
"bank_id": bank_id,
|
|
"query": query,
|
|
"params": params,
|
|
},
|
|
headers={"Content-Type": "application/json"},
|
|
timeout=20,
|
|
)
|
|
r.raise_for_status()
|
|
return QueryDocumentsResponse(**r.json())
|
|
|
|
|
|
async def run_main(host: str, port: int, stream: bool):
|
|
client = MemoryClient(f"http://{host}:{port}")
|
|
|
|
# create a memory bank
|
|
bank = await client.create_memory_bank(
|
|
name="test_bank",
|
|
config=VectorMemoryBankConfig(
|
|
bank_id="test_bank",
|
|
embedding_model="dragon-roberta-query-2",
|
|
chunk_size_in_tokens=512,
|
|
overlap_size_in_tokens=64,
|
|
),
|
|
)
|
|
print(bank)
|
|
|
|
retrieved_bank = await client.get_memory_bank(bank.bank_id)
|
|
assert retrieved_bank is not None
|
|
assert retrieved_bank.config.embedding_model == "dragon-roberta-query-2"
|
|
|
|
urls = [
|
|
"memory_optimizations.rst",
|
|
"chat.rst",
|
|
"llama3.rst",
|
|
"datasets.rst",
|
|
"qat_finetune.rst",
|
|
"lora_finetune.rst",
|
|
]
|
|
documents = [
|
|
MemoryBankDocument(
|
|
document_id=f"num-{i}",
|
|
content=URL(
|
|
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
|
|
),
|
|
mime_type="text/plain",
|
|
)
|
|
for i, url in enumerate(urls)
|
|
]
|
|
|
|
# insert some documents
|
|
await client.insert_documents(
|
|
bank_id=bank.bank_id,
|
|
documents=documents,
|
|
)
|
|
|
|
# query the documents
|
|
response = await client.query_documents(
|
|
bank_id=bank.bank_id,
|
|
query=[
|
|
"How do I use Lora?",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
response = await client.query_documents(
|
|
bank_id=bank.bank_id,
|
|
query=[
|
|
"Tell me more about llama3 and torchtune",
|
|
],
|
|
)
|
|
for chunk, score in zip(response.chunks, response.scores):
|
|
print(f"Score: {score}")
|
|
print(f"Chunk:\n========\n{chunk}\n========\n")
|
|
|
|
|
|
def main(host: str, port: int, stream: bool = True):
|
|
asyncio.run(run_main(host, port, stream))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(main)
|