mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
* add tools to chat completion request * use templates for generating system prompts * Moved ToolPromptFormat and jinja templates to llama_models.llama3.api * <WIP> memory changes - inlined AgenticSystemInstanceConfig so API feels more ergonomic - renamed it to AgentConfig, AgentInstance -> Agent - added a MemoryConfig and `memory` parameter - added `attachments` to input and `output_attachments` to the response - some naming changes * InterleavedTextAttachment -> InterleavedTextMedia, introduce memory tool * flesh out memory banks API * agentic loop has a RAG implementation * faiss provider implementation * memory client works * re-work tool definitions, fix FastAPI issues, fix tool regressions * fix agentic_system utils * basic RAG seems to work * small bug fixes for inline attachments * Refactor custom tool execution utilities * Bug fix, show memory retrieval steps in EventLogger * No need for api_key for Remote providers * add special unicode character ↵ to showcase newlines in model prompt templates * remove api.endpoints imports * combine datatypes.py and endpoints.py into api.py * Attachment / add TTL api * split batch_inference from inference * minor import fixes * use a single impl for ChatFormat.decode_assistant_mesage * use interleaved_text_media_as_str() utilityt * Fix api.datatypes imports * Add blobfile for tiktoken * Add ToolPromptFormat to ChatFormat.encode_message so that tools are encoded properly * templates take optional --format={json,function_tag} * Rag Updates * Add `api build` subcommand -- WIP * fix * build + run image seems to work * <WIP> adapters * bunch more work to make adapters work * api build works for conda now * ollama remote adapter works * Several smaller fixes to make adapters work Also, reorganized the pattern of __init__ inside providers so configuration can stay lightweight * llama distribution -> llama stack + containers (WIP) * All the new CLI for api + stack work * Make Fireworks and Together into the Adapter format * Some quick fixes to the CLI behavior to make it consistent * Updated README phew * Update cli_reference.md * llama_toolchain/distribution -> llama_toolchain/core * Add termcolor * update paths * Add a log just for consistency * chmod +x scripts * Fix api dependencies not getting added to configuration * missing import lol * Delete utils.py; move to agentic system * Support downloading of URLs for attachments for code interpreter * Simplify and generalize `llama api build` yay * Update `llama stack configure` to be very simple also * Fix stack start * Allow building an "adhoc" distribution * Remote `llama api []` subcommands * Fixes to llama stack commands and update docs * Update documentation again and add error messages to llama stack start * llama stack start -> llama stack run * Change name of build for less confusion * Add pyopenapi fork to the repository, update RFC assets * Remove conflicting annotation * Added a "--raw" option for model template printing --------- Co-authored-by: Hardik Shah <hjshah@fb.com> Co-authored-by: Ashwin Bharambe <ashwin@meta.com> Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
209 lines
4.7 KiB
Python
209 lines
4.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from datetime import datetime
|
|
from enum import Enum
|
|
|
|
from typing import Any, Dict, List, Optional, Protocol
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
from llama_toolchain.dataset.api import * # noqa: F403
|
|
from llama_toolchain.common.training_types import * # noqa: F403
|
|
|
|
|
|
class OptimizerType(Enum):
|
|
adam = "adam"
|
|
adamw = "adamw"
|
|
sgd = "sgd"
|
|
|
|
|
|
@json_schema_type
|
|
class OptimizerConfig(BaseModel):
|
|
optimizer_type: OptimizerType
|
|
lr: float
|
|
lr_min: float
|
|
weight_decay: float
|
|
|
|
|
|
@json_schema_type
|
|
class TrainingConfig(BaseModel):
|
|
n_epochs: int
|
|
batch_size: int
|
|
shuffle: bool
|
|
n_iters: int
|
|
|
|
enable_activation_checkpointing: bool
|
|
memory_efficient_fsdp_wrap: bool
|
|
fsdp_cpu_offload: bool
|
|
|
|
|
|
@json_schema_type
|
|
class FinetuningAlgorithm(Enum):
|
|
full = "full"
|
|
lora = "lora"
|
|
qlora = "qlora"
|
|
dora = "dora"
|
|
|
|
|
|
@json_schema_type
|
|
class LoraFinetuningConfig(BaseModel):
|
|
lora_attn_modules: List[str]
|
|
apply_lora_to_mlp: bool
|
|
apply_lora_to_output: bool
|
|
rank: int
|
|
alpha: int
|
|
|
|
|
|
@json_schema_type
|
|
class QLoraFinetuningConfig(LoraFinetuningConfig):
|
|
pass
|
|
|
|
|
|
@json_schema_type
|
|
class DoraFinetuningConfig(LoraFinetuningConfig):
|
|
pass
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobLogStream(BaseModel):
|
|
"""Stream of logs from a finetuning job."""
|
|
|
|
job_uuid: str
|
|
log_lines: List[str]
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobStatus(Enum):
|
|
running = "running"
|
|
completed = "completed"
|
|
failed = "failed"
|
|
scheduled = "scheduled"
|
|
|
|
|
|
@json_schema_type
|
|
class RLHFAlgorithm(Enum):
|
|
dpo = "dpo"
|
|
|
|
|
|
@json_schema_type
|
|
class DPOAlignmentConfig(BaseModel):
|
|
reward_scale: float
|
|
reward_clip: float
|
|
epsilon: float
|
|
gamma: float
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingSFTRequest(BaseModel):
|
|
"""Request to finetune a model."""
|
|
|
|
job_uuid: str
|
|
|
|
model: str
|
|
dataset: TrainEvalDataset
|
|
validation_dataset: TrainEvalDataset
|
|
|
|
algorithm: FinetuningAlgorithm
|
|
algorithm_config: Union[
|
|
LoraFinetuningConfig, QLoraFinetuningConfig, DoraFinetuningConfig
|
|
]
|
|
|
|
optimizer_config: OptimizerConfig
|
|
training_config: TrainingConfig
|
|
|
|
# TODO: define these
|
|
hyperparam_search_config: Dict[str, Any]
|
|
logger_config: Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingRLHFRequest(BaseModel):
|
|
"""Request to finetune a model."""
|
|
|
|
job_uuid: str
|
|
|
|
finetuned_model: URL
|
|
|
|
dataset: TrainEvalDataset
|
|
validation_dataset: TrainEvalDataset
|
|
|
|
algorithm: RLHFAlgorithm
|
|
algorithm_config: Union[DPOAlignmentConfig]
|
|
|
|
optimizer_config: OptimizerConfig
|
|
training_config: TrainingConfig
|
|
|
|
# TODO: define these
|
|
hyperparam_search_config: Dict[str, Any]
|
|
logger_config: Dict[str, Any]
|
|
|
|
|
|
class PostTrainingJob(BaseModel):
|
|
job_uuid: str
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobStatusResponse(BaseModel):
|
|
"""Status of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
status: PostTrainingJobStatus
|
|
|
|
scheduled_at: Optional[datetime] = None
|
|
started_at: Optional[datetime] = None
|
|
completed_at: Optional[datetime] = None
|
|
|
|
resources_allocated: Optional[Dict[str, Any]] = None
|
|
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
|
|
@json_schema_type
|
|
class PostTrainingJobArtifactsResponse(BaseModel):
|
|
"""Artifacts of a finetuning job."""
|
|
|
|
job_uuid: str
|
|
checkpoints: List[Checkpoint] = Field(default_factory=list)
|
|
|
|
# TODO(ashwin): metrics, evals
|
|
|
|
|
|
class PostTraining(Protocol):
|
|
@webmethod(route="/post_training/supervised_fine_tune")
|
|
def supervised_fine_tune(
|
|
self,
|
|
request: PostTrainingSFTRequest,
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post_training/preference_optimize")
|
|
def preference_optimize(
|
|
self,
|
|
request: PostTrainingRLHFRequest,
|
|
) -> PostTrainingJob: ...
|
|
|
|
@webmethod(route="/post_training/jobs")
|
|
def get_training_jobs(self) -> List[PostTrainingJob]: ...
|
|
|
|
# sends SSE stream of logs
|
|
@webmethod(route="/post_training/job/logs")
|
|
def get_training_job_logstream(self, job_uuid: str) -> PostTrainingJobLogStream: ...
|
|
|
|
@webmethod(route="/post_training/job/status")
|
|
def get_training_job_status(
|
|
self, job_uuid: str
|
|
) -> PostTrainingJobStatusResponse: ...
|
|
|
|
@webmethod(route="/post_training/job/cancel")
|
|
def cancel_training_job(self, job_uuid: str) -> None: ...
|
|
|
|
@webmethod(route="/post_training/job/artifacts")
|
|
def get_training_job_artifacts(
|
|
self, job_uuid: str
|
|
) -> PostTrainingJobArtifactsResponse: ...
|