llama-stack-mirror/llama_stack/distribution/routing_tables/benchmarks.py
grs 7c1998db25
feat: fine grained access control policy (#2264)
This allows a set of rules to be defined for determining access to
resources. The rules are (loosely) based on the cedar policy format.

A rule defines a list of action either to permit or to forbid. It may
specify a principal or a resource that must match for the rule to take
effect. It may also specify a condition, either a 'when' or an 'unless',
with additional constraints as to where the rule applies.

A list of rules is held for each type to be protected and tried in order
to find a match. If a match is found, the request is permitted or
forbidden depening on the type of rule. If no match is found, the
request is denied. If no rules are specified for a given type, a rule
that allows any action as long as the resource attributes match the user
attributes is added (i.e. the previous behaviour is the default.

Some examples in yaml:

```
    model:
    - permit:
      principal: user-1
      actions: [create, read, delete]
      comment: user-1 has full access to all models
    - permit:
      principal: user-2
      actions: [read]
      resource: model-1
      comment: user-2 has read access to model-1 only
    - permit:
      actions: [read]
      when:
        user_in: resource.namespaces
      comment: any user has read access to models with matching attributes
    vector_db:
    - forbid:
      actions: [create, read, delete]
      unless:
        user_in: role::admin
      comment: only user with admin role can use vector_db resources
```

---------

Signed-off-by: Gordon Sim <gsim@redhat.com>
2025-06-03 14:51:12 -07:00

58 lines
2.1 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any
from llama_stack.apis.benchmarks import Benchmark, Benchmarks, ListBenchmarksResponse
from llama_stack.distribution.datatypes import (
BenchmarkWithOwner,
)
from llama_stack.log import get_logger
from .common import CommonRoutingTableImpl
logger = get_logger(name=__name__, category="core")
class BenchmarksRoutingTable(CommonRoutingTableImpl, Benchmarks):
async def list_benchmarks(self) -> ListBenchmarksResponse:
return ListBenchmarksResponse(data=await self.get_all_with_type("benchmark"))
async def get_benchmark(self, benchmark_id: str) -> Benchmark:
benchmark = await self.get_object_by_identifier("benchmark", benchmark_id)
if benchmark is None:
raise ValueError(f"Benchmark '{benchmark_id}' not found")
return benchmark
async def register_benchmark(
self,
benchmark_id: str,
dataset_id: str,
scoring_functions: list[str],
metadata: dict[str, Any] | None = None,
provider_benchmark_id: str | None = None,
provider_id: str | None = None,
) -> None:
if metadata is None:
metadata = {}
if provider_id is None:
if len(self.impls_by_provider_id) == 1:
provider_id = list(self.impls_by_provider_id.keys())[0]
else:
raise ValueError(
"No provider specified and multiple providers available. Please specify a provider_id."
)
if provider_benchmark_id is None:
provider_benchmark_id = benchmark_id
benchmark = BenchmarkWithOwner(
identifier=benchmark_id,
dataset_id=dataset_id,
scoring_functions=scoring_functions,
metadata=metadata,
provider_id=provider_id,
provider_resource_id=provider_benchmark_id,
)
await self.register_object(benchmark)