mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
# What does this PR do? <!-- Provide a short summary of what this PR does and why. Link to relevant issues if applicable. --> This PR removes `init()` from `LlamaStackAsLibrary` Currently client.initialize() had to be invoked by user. To improve dev experience and to avoid runtime errors, this PR init LlamaStackAsLibrary implicitly upon using the client. It prevents also multiple init of the same client, while maintaining backward ccompatibility. This PR does the following - Automatic Initialization: Constructor calls initialize_impl() automatically. - Client is fully initialized after __init__ completes. - Prevents consecutive initialization after the client has been successfully initialized. - initialize() method still exists but is now a no-op. <!-- If resolving an issue, uncomment and update the line below --> <!-- Closes #[issue-number] --> fixes https://github.com/meta-llama/llama-stack/issues/2946 --------- Signed-off-by: Mustafa Elbehery <melbeher@redhat.com>
323 lines
12 KiB
Python
323 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import inspect
|
|
import os
|
|
import shlex
|
|
import signal
|
|
import socket
|
|
import subprocess
|
|
import tempfile
|
|
import time
|
|
from urllib.parse import urlparse
|
|
|
|
import pytest
|
|
import requests
|
|
import yaml
|
|
from llama_stack_client import LlamaStackClient
|
|
from openai import OpenAI
|
|
|
|
from llama_stack import LlamaStackAsLibraryClient
|
|
from llama_stack.core.stack import run_config_from_adhoc_config_spec
|
|
from llama_stack.env import get_env_or_fail
|
|
|
|
DEFAULT_PORT = 8321
|
|
|
|
|
|
def is_port_available(port: int, host: str = "localhost") -> bool:
|
|
"""Check if a port is available for binding."""
|
|
try:
|
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:
|
|
sock.bind((host, port))
|
|
return True
|
|
except OSError:
|
|
return False
|
|
|
|
|
|
def start_llama_stack_server(config_name: str) -> subprocess.Popen:
|
|
"""Start a llama stack server with the given config."""
|
|
cmd = f"uv run --with llama-stack llama stack build --distro {config_name} --image-type venv --run"
|
|
devnull = open(os.devnull, "w")
|
|
process = subprocess.Popen(
|
|
shlex.split(cmd),
|
|
stdout=devnull, # redirect stdout to devnull to prevent deadlock
|
|
stderr=subprocess.PIPE, # keep stderr to see errors
|
|
text=True,
|
|
env={**os.environ, "LLAMA_STACK_LOG_FILE": "server.log"},
|
|
# Create new process group so we can kill all child processes
|
|
preexec_fn=os.setsid,
|
|
)
|
|
return process
|
|
|
|
|
|
def wait_for_server_ready(base_url: str, timeout: int = 30, process: subprocess.Popen | None = None) -> bool:
|
|
"""Wait for the server to be ready by polling the health endpoint."""
|
|
health_url = f"{base_url}/v1/health"
|
|
start_time = time.time()
|
|
|
|
while time.time() - start_time < timeout:
|
|
if process and process.poll() is not None:
|
|
print(f"Server process terminated with return code: {process.returncode}")
|
|
print(f"Server stderr: {process.stderr.read()}")
|
|
return False
|
|
|
|
try:
|
|
response = requests.get(health_url, timeout=5)
|
|
if response.status_code == 200:
|
|
return True
|
|
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
|
|
pass
|
|
|
|
# Print progress every 5 seconds
|
|
elapsed = time.time() - start_time
|
|
if int(elapsed) % 5 == 0 and elapsed > 0:
|
|
print(f"Waiting for server at {base_url}... ({elapsed:.1f}s elapsed)")
|
|
|
|
time.sleep(0.5)
|
|
|
|
print(f"Server failed to respond within {timeout} seconds")
|
|
return False
|
|
|
|
|
|
def get_provider_data():
|
|
# TODO: this needs to be generalized so each provider can have a sample provider data just
|
|
# like sample run config on which we can do replace_env_vars()
|
|
keymap = {
|
|
"TAVILY_SEARCH_API_KEY": "tavily_search_api_key",
|
|
"BRAVE_SEARCH_API_KEY": "brave_search_api_key",
|
|
"FIREWORKS_API_KEY": "fireworks_api_key",
|
|
"GEMINI_API_KEY": "gemini_api_key",
|
|
"OPENAI_API_KEY": "openai_api_key",
|
|
"TOGETHER_API_KEY": "together_api_key",
|
|
"ANTHROPIC_API_KEY": "anthropic_api_key",
|
|
"GROQ_API_KEY": "groq_api_key",
|
|
"WOLFRAM_ALPHA_API_KEY": "wolfram_alpha_api_key",
|
|
}
|
|
provider_data = {}
|
|
for key, value in keymap.items():
|
|
if os.environ.get(key):
|
|
provider_data[value] = os.environ[key]
|
|
return provider_data
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_provider_type(llama_stack_client):
|
|
providers = llama_stack_client.providers.list()
|
|
inference_providers = [p for p in providers if p.api == "inference"]
|
|
assert len(inference_providers) > 0, "No inference providers found"
|
|
return inference_providers[0].provider_type
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def client_with_models(
|
|
llama_stack_client,
|
|
text_model_id,
|
|
vision_model_id,
|
|
embedding_model_id,
|
|
embedding_dimension,
|
|
judge_model_id,
|
|
):
|
|
client = llama_stack_client
|
|
|
|
providers = [p for p in client.providers.list() if p.api == "inference"]
|
|
assert len(providers) > 0, "No inference providers found"
|
|
inference_providers = [p.provider_id for p in providers if p.provider_type != "inline::sentence-transformers"]
|
|
|
|
model_ids = {m.identifier for m in client.models.list()}
|
|
model_ids.update(m.provider_resource_id for m in client.models.list())
|
|
|
|
if text_model_id and text_model_id not in model_ids:
|
|
client.models.register(model_id=text_model_id, provider_id=inference_providers[0])
|
|
if vision_model_id and vision_model_id not in model_ids:
|
|
client.models.register(model_id=vision_model_id, provider_id=inference_providers[0])
|
|
if judge_model_id and judge_model_id not in model_ids:
|
|
client.models.register(model_id=judge_model_id, provider_id=inference_providers[0])
|
|
|
|
if embedding_model_id and embedding_model_id not in model_ids:
|
|
# try to find a provider that supports embeddings, if sentence-transformers is not available
|
|
selected_provider = None
|
|
for p in providers:
|
|
if p.provider_type == "inline::sentence-transformers":
|
|
selected_provider = p
|
|
break
|
|
|
|
selected_provider = selected_provider or providers[0]
|
|
client.models.register(
|
|
model_id=embedding_model_id,
|
|
provider_id=selected_provider.provider_id,
|
|
model_type="embedding",
|
|
metadata={"embedding_dimension": embedding_dimension or 384},
|
|
)
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def available_shields(llama_stack_client):
|
|
return [shield.identifier for shield in llama_stack_client.shields.list()]
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def model_providers(llama_stack_client):
|
|
return {x.provider_id for x in llama_stack_client.providers.list() if x.api == "inference"}
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def skip_if_no_model(request):
|
|
model_fixtures = ["text_model_id", "vision_model_id", "embedding_model_id", "judge_model_id"]
|
|
test_func = request.node.function
|
|
|
|
actual_params = inspect.signature(test_func).parameters.keys()
|
|
for fixture in model_fixtures:
|
|
# Only check fixtures that are actually in the test function's signature
|
|
if fixture in actual_params and fixture in request.fixturenames and not request.getfixturevalue(fixture):
|
|
pytest.skip(f"{fixture} empty - skipping test")
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def llama_stack_client(request):
|
|
# ideally, we could do this in session start given all the complex logs during initialization
|
|
# don't clobber the test one-liner outputs. however, this also means all tests in a sub-directory
|
|
# would be forced to use llama_stack_client, which is not what we want.
|
|
print("\ninstantiating llama_stack_client")
|
|
start_time = time.time()
|
|
client = instantiate_llama_stack_client(request.session)
|
|
print(f"llama_stack_client instantiated in {time.time() - start_time:.3f}s")
|
|
return client
|
|
|
|
|
|
def instantiate_llama_stack_client(session):
|
|
config = session.config.getoption("--stack-config")
|
|
if not config:
|
|
config = get_env_or_fail("LLAMA_STACK_CONFIG")
|
|
|
|
if not config:
|
|
raise ValueError("You must specify either --stack-config or LLAMA_STACK_CONFIG")
|
|
|
|
# Handle server:<config_name> format or server:<config_name>:<port>
|
|
if config.startswith("server:"):
|
|
parts = config.split(":")
|
|
config_name = parts[1]
|
|
port = int(parts[2]) if len(parts) > 2 else int(os.environ.get("LLAMA_STACK_PORT", DEFAULT_PORT))
|
|
base_url = f"http://localhost:{port}"
|
|
|
|
# Check if port is available
|
|
if is_port_available(port):
|
|
print(f"Starting llama stack server with config '{config_name}' on port {port}...")
|
|
|
|
# Start server
|
|
server_process = start_llama_stack_server(config_name)
|
|
|
|
# Wait for server to be ready
|
|
if not wait_for_server_ready(base_url, timeout=120, process=server_process):
|
|
print("Server failed to start within timeout")
|
|
server_process.terminate()
|
|
raise RuntimeError(
|
|
f"Server failed to start within timeout. Check that config '{config_name}' exists and is valid. "
|
|
f"See server.log for details."
|
|
)
|
|
|
|
print(f"Server is ready at {base_url}")
|
|
|
|
# Store process for potential cleanup (pytest will handle termination at session end)
|
|
session._llama_stack_server_process = server_process
|
|
else:
|
|
print(f"Port {port} is already in use, assuming server is already running...")
|
|
|
|
return LlamaStackClient(
|
|
base_url=base_url,
|
|
provider_data=get_provider_data(),
|
|
timeout=int(os.environ.get("LLAMA_STACK_CLIENT_TIMEOUT", "30")),
|
|
)
|
|
|
|
# check if this looks like a URL using proper URL parsing
|
|
try:
|
|
parsed_url = urlparse(config)
|
|
if parsed_url.scheme and parsed_url.netloc:
|
|
return LlamaStackClient(
|
|
base_url=config,
|
|
provider_data=get_provider_data(),
|
|
)
|
|
except Exception:
|
|
# If URL parsing fails, treat as non-URL config
|
|
pass
|
|
|
|
if "=" in config:
|
|
run_config = run_config_from_adhoc_config_spec(config)
|
|
run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
|
|
with open(run_config_file.name, "w") as f:
|
|
yaml.dump(run_config.model_dump(), f)
|
|
config = run_config_file.name
|
|
|
|
client = LlamaStackAsLibraryClient(
|
|
config,
|
|
provider_data=get_provider_data(),
|
|
skip_logger_removal=True,
|
|
)
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def require_server(llama_stack_client):
|
|
"""
|
|
Skip test if no server is running.
|
|
|
|
We use the llama_stack_client to tell if a server was started or not.
|
|
|
|
We use this with openai_client because it relies on a running server.
|
|
"""
|
|
if isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
|
pytest.skip("No server running")
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def openai_client(llama_stack_client, require_server):
|
|
base_url = f"{llama_stack_client.base_url}/v1/openai/v1"
|
|
return OpenAI(base_url=base_url, api_key="fake")
|
|
|
|
|
|
@pytest.fixture(params=["openai_client", "client_with_models"])
|
|
def compat_client(request, client_with_models):
|
|
if request.param == "openai_client" and isinstance(client_with_models, LlamaStackAsLibraryClient):
|
|
# OpenAI client expects a server, so unless we also rewrite OpenAI client's requests
|
|
# to go via the Stack library client (which itself rewrites requests to be served inline),
|
|
# we cannot do this.
|
|
#
|
|
# This means when we are using Stack as a library, we will test only via the Llama Stack client.
|
|
# When we are using a server setup, we can exercise both OpenAI and Llama Stack clients.
|
|
pytest.skip("(OpenAI) Compat client cannot be used with Stack library client")
|
|
|
|
return request.getfixturevalue(request.param)
|
|
|
|
|
|
@pytest.fixture(scope="session", autouse=True)
|
|
def cleanup_server_process(request):
|
|
"""Cleanup server process at the end of the test session."""
|
|
yield # Run tests
|
|
|
|
if hasattr(request.session, "_llama_stack_server_process"):
|
|
server_process = request.session._llama_stack_server_process
|
|
if server_process:
|
|
if server_process.poll() is None:
|
|
print("Terminating llama stack server process...")
|
|
else:
|
|
print(f"Server process already terminated with return code: {server_process.returncode}")
|
|
return
|
|
try:
|
|
print(f"Terminating process {server_process.pid} and its group...")
|
|
# Kill the entire process group
|
|
os.killpg(os.getpgid(server_process.pid), signal.SIGTERM)
|
|
server_process.wait(timeout=10)
|
|
print("Server process and children terminated gracefully")
|
|
except subprocess.TimeoutExpired:
|
|
print("Server process did not terminate gracefully, killing it")
|
|
# Force kill the entire process group
|
|
os.killpg(os.getpgid(server_process.pid), signal.SIGKILL)
|
|
server_process.wait()
|
|
print("Server process and children killed")
|
|
except Exception as e:
|
|
print(f"Error during server cleanup: {e}")
|
|
else:
|
|
print("Server process not found - won't be able to cleanup")
|