llama-stack-mirror/tests/integration/responses/test_basic_responses.py

374 lines
15 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import time
import pytest
from .fixtures.test_cases import basic_test_cases, image_test_cases, multi_turn_image_test_cases, multi_turn_test_cases
from .streaming_assertions import StreamingValidator
def provider_from_model(responses_client, text_model_id):
models = {m.id: m for m in responses_client.models.list()}
models.update(
{m.custom_metadata["provider_resource_id"]: m for m in responses_client.models.list() if m.custom_metadata}
)
provider_id = models[text_model_id].custom_metadata["provider_id"]
providers = {p.provider_id: p for p in responses_client.providers.list()}
return providers[provider_id]
def skip_if_chat_completions_logprobs_not_supported(responses_client, text_model_id):
provider_type = provider_from_model(responses_client, text_model_id).provider_type
if provider_type in ("remote::ollama",):
pytest.skip(f"Model {text_model_id} hosted by {provider_type} doesn't support /v1/chat/completions logprobs.")
@pytest.mark.parametrize("case", basic_test_cases)
def test_response_non_streaming_basic(responses_client, text_model_id, case):
response = responses_client.responses.create(
model=text_model_id,
input=case.input,
stream=False,
)
output_text = response.output_text.lower().strip()
assert len(output_text) > 0
assert case.expected.lower() in output_text
# Verify usage is reported
assert response.usage is not None, "Response should include usage information"
assert response.usage.input_tokens > 0, "Input tokens should be greater than 0"
assert response.usage.output_tokens > 0, "Output tokens should be greater than 0"
assert response.usage.total_tokens == response.usage.input_tokens + response.usage.output_tokens, (
"Total tokens should equal input + output tokens"
)
retrieved_response = responses_client.responses.retrieve(response_id=response.id)
assert retrieved_response.output_text == response.output_text
next_response = responses_client.responses.create(
model=text_model_id,
input="Repeat your previous response in all caps.",
previous_response_id=response.id,
)
next_output_text = next_response.output_text.strip()
assert case.expected.upper() in next_output_text
@pytest.mark.parametrize("case", basic_test_cases)
def test_response_streaming_basic(responses_client, text_model_id, case):
response = responses_client.responses.create(
model=text_model_id,
input=case.input,
stream=True,
)
# Track events and timing to verify proper streaming
events = []
event_times = []
response_id = ""
start_time = time.time()
for chunk in response:
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
if chunk.type == "response.created":
# Verify response.created is emitted first and immediately
assert len(events) == 1, "response.created should be the first event"
assert event_times[0] < 0.2, (
f"response.created should be emitted immediately (took {event_times[0]} seconds)"
)
assert chunk.response.status == "in_progress"
response_id = chunk.response.id
elif chunk.type == "response.completed":
# Verify response.completed comes after response.created
assert len(events) >= 2, "response.completed should come after response.created"
assert chunk.response.status == "completed"
assert chunk.response.id == response_id, "Response ID should be consistent"
# Verify content quality
output_text = chunk.response.output_text.lower().strip()
assert len(output_text) > 0, "Response should have content"
assert case.expected.lower() in output_text, f"Expected '{case.expected}' in response"
# Verify usage is reported in final response
assert chunk.response.usage is not None, "Completed response should include usage information"
assert chunk.response.usage.input_tokens > 0, "Input tokens should be greater than 0"
assert chunk.response.usage.output_tokens > 0, "Output tokens should be greater than 0"
assert (
chunk.response.usage.total_tokens
== chunk.response.usage.input_tokens + chunk.response.usage.output_tokens
), "Total tokens should equal input + output tokens"
# Use validator for common checks
validator = StreamingValidator(events)
validator.assert_basic_event_sequence()
validator.assert_response_consistency()
# Verify stored response matches streamed response
retrieved_response = responses_client.responses.retrieve(response_id=response_id)
final_event = events[-1]
assert retrieved_response.output_text == final_event.response.output_text
@pytest.mark.parametrize("case", basic_test_cases)
def test_response_streaming_incremental_content(responses_client, text_model_id, case):
"""Test that streaming actually delivers content incrementally, not just at the end."""
response = responses_client.responses.create(
model=text_model_id,
input=case.input,
stream=True,
)
# Track all events and their content to verify incremental streaming
events = []
content_snapshots = []
event_times = []
start_time = time.time()
for chunk in response:
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
# Track content at each event based on event type
if chunk.type == "response.output_text.delta":
# For delta events, track the delta content
content_snapshots.append(chunk.delta)
elif hasattr(chunk, "response") and hasattr(chunk.response, "output_text"):
# For response.created/completed events, track the full output_text
content_snapshots.append(chunk.response.output_text)
else:
content_snapshots.append("")
validator = StreamingValidator(events)
validator.assert_basic_event_sequence()
# Check if we have incremental content updates
event_types = [event.type for event in events]
created_index = event_types.index("response.created")
completed_index = event_types.index("response.completed")
# The key test: verify content progression
created_content = content_snapshots[created_index]
completed_content = content_snapshots[completed_index]
# Verify that response.created has empty or minimal content
assert len(created_content) == 0, f"response.created should have empty content, got: {repr(created_content[:100])}"
# Verify that response.completed has the full content
assert len(completed_content) > 0, "response.completed should have content"
assert case.expected.lower() in completed_content.lower(), f"Expected '{case.expected}' in final content"
# Use validator for incremental content checks
delta_content_total = validator.assert_has_incremental_content()
# Verify that the accumulated delta content matches the final content
assert delta_content_total.strip() == completed_content.strip(), (
f"Delta content '{delta_content_total}' should match final content '{completed_content}'"
)
# Verify timing: delta events should come between created and completed
delta_events = [i for i, event_type in enumerate(event_types) if event_type == "response.output_text.delta"]
for delta_idx in delta_events:
assert created_index < delta_idx < completed_index, (
f"Delta event at index {delta_idx} should be between created ({created_index}) and completed ({completed_index})"
)
@pytest.mark.parametrize("case", multi_turn_test_cases)
def test_response_non_streaming_multi_turn(responses_client, text_model_id, case):
previous_response_id = None
for turn_input, turn_expected in case.turns:
response = responses_client.responses.create(
model=text_model_id,
input=turn_input,
previous_response_id=previous_response_id,
)
previous_response_id = response.id
output_text = response.output_text.lower()
assert turn_expected.lower() in output_text
@pytest.mark.parametrize("case", image_test_cases)
def test_response_non_streaming_image(responses_client, text_model_id, case):
response = responses_client.responses.create(
model=text_model_id,
input=case.input,
stream=False,
)
output_text = response.output_text.lower()
assert case.expected.lower() in output_text
@pytest.mark.parametrize("case", multi_turn_image_test_cases)
def test_response_non_streaming_multi_turn_image(responses_client, text_model_id, case):
previous_response_id = None
for turn_input, turn_expected in case.turns:
response = responses_client.responses.create(
model=text_model_id,
input=turn_input,
previous_response_id=previous_response_id,
)
previous_response_id = response.id
output_text = response.output_text.lower()
assert turn_expected.lower() in output_text
def test_include_logprobs_non_streaming(client_with_models, text_model_id):
"""Test logprobs inclusion in responses with the include parameter."""
skip_if_chat_completions_logprobs_not_supported(client_with_models, text_model_id)
input = "Which planet do humans live on?"
include = ["message.output_text.logprobs"]
# Create a response without include["message.output_text.logprobs"]
response_w_o_logprobs = client_with_models.responses.create(
model=text_model_id,
input=input,
stream=False,
)
# Verify we got one output message and no logprobs
assert len(response_w_o_logprobs.output) == 1
message_outputs = [output for output in response_w_o_logprobs.output if output.type == "message"]
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
assert message_outputs[0].content[0].logprobs is None, "Expected no logprobs in the returned response"
# Create a response with include["message.output_text.logprobs"]
response_with_logprobs = client_with_models.responses.create(
model=text_model_id,
input=input,
stream=False,
include=include,
)
# Verify we got one output message and output message has logprobs
assert len(response_with_logprobs.output) == 1
message_outputs = [output for output in response_with_logprobs.output if output.type == "message"]
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
assert message_outputs[0].content[0].logprobs is not None, (
"Expected logprobs in the returned response, but none were returned"
)
def test_include_logprobs_streaming(client_with_models, text_model_id):
"""Test logprobs inclusion in responses with the include parameter."""
skip_if_chat_completions_logprobs_not_supported(client_with_models, text_model_id)
input = "Which planet do humans live on?"
include = ["message.output_text.logprobs"]
# Create a streaming response with include["message.output_text.logprobs"]
stream = client_with_models.responses.create(
model=text_model_id,
input=input,
stream=True,
include=include,
)
for chunk in stream:
if chunk.type == "response.completed":
message_outputs = [output for output in chunk.response.output if output.type == "message"]
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
assert message_outputs[0].content[0].logprobs is not None, (
f"Expected logprobs in the returned chunk ({chunk.type=}), but none were returned"
)
elif chunk.type == "response.output_item.done":
content = chunk.item.content
assert len(content) == 1, f"Expected one content object, got {len(content)}"
assert content[0].logprobs is not None, (
f"Expected logprobs in the returned chunk ({chunk.type=}), but none were returned"
)
elif chunk.type in ["response.output_text.delta", "response.output_text.done"]:
assert chunk.logprobs is not None, (
f"Expected logprobs in the returned chunk ({chunk.type=}), but none were returned"
)
elif chunk.type == "response.content_part.done":
assert chunk.part.logprobs is None, f"Expected no logprobs in the returned chunk ({chunk.type=})"
def test_include_logprobs_with_web_search(client_with_models, text_model_id):
"""Test include logprobs with built-in tool."""
skip_if_chat_completions_logprobs_not_supported(client_with_models, text_model_id)
input = "Search for a positive news story from today."
include = ["message.output_text.logprobs"]
tools = [
{
"type": "web_search",
}
]
# Create a response with built-in tool and include["message.output_text.logprobs"]
response = client_with_models.responses.create(
model=text_model_id,
input=input,
stream=False,
include=include,
tools=tools,
)
# Verify we got one built-in tool call and output message has logprobs
assert len(response.output) >= 2
assert response.output[0].type == "web_search_call"
assert response.output[0].status == "completed"
message_outputs = [output for output in response.output if output.type == "message"]
assert len(message_outputs) == 1, f"Expected one message output, got {len(message_outputs)}"
assert message_outputs[0].content[0].logprobs is not None, (
"Expected logprobs in the returned response, but none were returned"
)
def test_include_logprobs_with_function_tools(client_with_models, text_model_id):
"""Test include logprobs with function tools."""
skip_if_chat_completions_logprobs_not_supported(client_with_models, text_model_id)
input = "What is the weather in Paris?"
include = ["message.output_text.logprobs"]
tools = [
{
"type": "function",
"name": "get_weather",
"description": "Get weather information for a specified location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city name (e.g., 'New York', 'London')",
},
},
},
},
]
# Create a response with function tool and include["message.output_text.logprobs"]
response = client_with_models.responses.create(
model=text_model_id,
input=input,
stream=False,
include=include,
tools=tools,
)
# Verify we got one function tool call and no logprobs
assert len(response.output) == 1
assert response.output[0].type == "function_call"
assert response.output[0].name == "get_weather"
assert response.output[0].status == "completed"
message_outputs = [output for output in response.output if output.type == "message"]
assert len(message_outputs) == 0, f"Expected no message output, got {len(message_outputs)}"