mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-30 11:50:14 +00:00
# What does this PR do? - Fix typo - Support Llama 3.3 70B ## Test Plan Run the following scripts and obtain the test results Script ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming --env SAMBANOVA_API_KEY={API_KEY} ``` Result ``` llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-sambanova] PASSED =========================================== 1 passed, 1 warning in 1.26s ============================================ ``` Script ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming --env SAMBANOVA_API_KEY={API_KEY} ``` Result ``` llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-sambanova] PASSED =========================================== 1 passed, 1 warning in 0.52s ============================================ ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [N] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [Y] Ran pre-commit to handle lint / formatting issues. - [Y] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [Y] Updated relevant documentation. - [N] Wrote necessary unit or integration tests. |
||
---|---|---|
.. | ||
_static | ||
notebooks | ||
openapi_generator | ||
resources | ||
source | ||
zero_to_hero_guide | ||
contbuild.sh | ||
dog.jpg | ||
getting_started.ipynb | ||
license_header.txt | ||
make.bat | ||
Makefile | ||
readme.md | ||
requirements.txt |
Llama Stack Documentation
Here's a collection of comprehensive guides, examples, and resources for building AI applications with Llama Stack. For the complete documentation, visit our ReadTheDocs page.
Content
Try out Llama Stack's capabilities through our detailed Jupyter notebooks:
- Building AI Applications Notebook - A comprehensive guide to building production-ready AI applications using Llama Stack
- Benchmark Evaluations Notebook - Detailed performance evaluations and benchmarking results
- Zero-to-Hero Guide - Step-by-step guide for getting started with Llama Stack