llama-stack-mirror/llama_stack/providers/utils/inference/litellm_openai_mixin.py
Michael Dawson 80405da304 fix: ensure usage is requested if telemetry is enabled
Refs: https://github.com/llamastack/llama-stack/issues/3420

When telemetry is enabled the router uncondionally expects the
usage attribute to be availble and fails if it is not present.

Telemetry is not currently being requested by litellm_openai_mixin.py
for streaming requests which means that providers like vertexai
fail if telemetry is enabled and streaming is used.

This is part of the required fix. Other part is in litell, will
plan to submit PR for that soon.

Signed-off-by: Michael Dawson <midawson@redhat.com>
2025-09-26 15:50:11 -04:00

452 lines
17 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator, AsyncIterator
from typing import Any
import litellm
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseStreamChunk,
EmbeddingsResponse,
EmbeddingTaskType,
InferenceProvider,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
OpenAIChatCompletion,
OpenAIChatCompletionChunk,
OpenAICompletion,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
OpenAIMessageParam,
OpenAIResponseFormatParam,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
from llama_stack.providers.utils.inference.openai_compat import (
b64_encode_openai_embeddings_response,
convert_message_to_openai_dict_new,
convert_openai_chat_completion_choice,
convert_openai_chat_completion_stream,
convert_tooldef_to_openai_tool,
get_sampling_options,
prepare_openai_completion_params,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
interleaved_content_as_str,
)
logger = get_logger(name=__name__, category="providers::utils")
class LiteLLMOpenAIMixin(
ModelRegistryHelper,
InferenceProvider,
NeedsRequestProviderData,
):
# TODO: avoid exposing the litellm specific model names to the user.
# potential change: add a prefix param that gets added to the model name
# when calling litellm.
def __init__(
self,
model_entries,
litellm_provider_name: str,
api_key_from_config: str | None,
provider_data_api_key_field: str,
openai_compat_api_base: str | None = None,
download_images: bool = False,
json_schema_strict: bool = True,
):
"""
Initialize the LiteLLMOpenAIMixin.
:param model_entries: The model entries to register.
:param api_key_from_config: The API key to use from the config.
:param provider_data_api_key_field: The field in the provider data that contains the API key.
:param litellm_provider_name: The name of the provider, used for model lookups.
:param openai_compat_api_base: The base URL for OpenAI compatibility, or None if not using OpenAI compatibility.
:param download_images: Whether to download images and convert to base64 for message conversion.
:param json_schema_strict: Whether to use strict mode for JSON schema validation.
"""
ModelRegistryHelper.__init__(self, model_entries)
self.litellm_provider_name = litellm_provider_name
self.api_key_from_config = api_key_from_config
self.provider_data_api_key_field = provider_data_api_key_field
self.api_base = openai_compat_api_base
self.download_images = download_images
self.json_schema_strict = json_schema_strict
if openai_compat_api_base:
self.is_openai_compat = True
else:
self.is_openai_compat = False
async def initialize(self):
pass
async def shutdown(self):
pass
def get_litellm_model_name(self, model_id: str) -> str:
# users may be using openai/ prefix in their model names. the openai/models.py did this by default.
# model_id.startswith("openai/") is for backwards compatibility.
return (
f"{self.litellm_provider_name}/{model_id}"
if self.is_openai_compat and not model_id.startswith(self.litellm_provider_name)
else model_id
)
async def completion(
self,
model_id: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
raise NotImplementedError("LiteLLM does not support completion requests")
async def chat_completion(
self,
model_id: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
if sampling_params is None:
sampling_params = SamplingParams()
model = await self.model_store.get_model(model_id)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
response_format=response_format,
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
params = await self._get_params(request)
params["model"] = self.get_litellm_model_name(params["model"])
logger.debug(f"params to litellm (openai compat): {params}")
# see https://docs.litellm.ai/docs/completion/stream#async-completion
response = await litellm.acompletion(**params)
if stream:
return self._stream_chat_completion(response)
else:
return convert_openai_chat_completion_choice(response.choices[0])
async def _stream_chat_completion(
self, response: litellm.ModelResponse
) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
async def _stream_generator():
async for chunk in response:
yield chunk
async for chunk in convert_openai_chat_completion_stream(
_stream_generator(), enable_incremental_tool_calls=True
):
yield chunk
def _add_additional_properties_recursive(self, schema):
"""
Recursively add additionalProperties: False to all object schemas
"""
if isinstance(schema, dict):
if schema.get("type") == "object":
schema["additionalProperties"] = False
# Add required field with all property keys if properties exist
if "properties" in schema and schema["properties"]:
schema["required"] = list(schema["properties"].keys())
if "properties" in schema:
for prop_schema in schema["properties"].values():
self._add_additional_properties_recursive(prop_schema)
for key in ["anyOf", "allOf", "oneOf"]:
if key in schema:
for sub_schema in schema[key]:
self._add_additional_properties_recursive(sub_schema)
if "not" in schema:
self._add_additional_properties_recursive(schema["not"])
# Handle $defs/$ref
if "$defs" in schema:
for def_schema in schema["$defs"].values():
self._add_additional_properties_recursive(def_schema)
return schema
async def _get_params(self, request: ChatCompletionRequest) -> dict:
input_dict = {}
input_dict["messages"] = [
await convert_message_to_openai_dict_new(m, download_images=self.download_images) for m in request.messages
]
if fmt := request.response_format:
if not isinstance(fmt, JsonSchemaResponseFormat):
raise ValueError(
f"Unsupported response format: {type(fmt)}. Only JsonSchemaResponseFormat is supported."
)
fmt = fmt.json_schema
name = fmt["title"]
del fmt["title"]
fmt["additionalProperties"] = False
# Apply additionalProperties: False recursively to all objects
fmt = self._add_additional_properties_recursive(fmt)
input_dict["response_format"] = {
"type": "json_schema",
"json_schema": {
"name": name,
"schema": fmt,
"strict": self.json_schema_strict,
},
}
if request.tools:
input_dict["tools"] = [convert_tooldef_to_openai_tool(tool) for tool in request.tools]
if request.tool_config.tool_choice:
input_dict["tool_choice"] = (
request.tool_config.tool_choice.value
if isinstance(request.tool_config.tool_choice, ToolChoice)
else request.tool_config.tool_choice
)
return {
"model": request.model,
"api_key": self.get_api_key(),
"api_base": self.api_base,
**input_dict,
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
def get_api_key(self) -> str:
provider_data = self.get_request_provider_data()
key_field = self.provider_data_api_key_field
if provider_data and getattr(provider_data, key_field, None):
api_key = getattr(provider_data, key_field)
else:
api_key = self.api_key_from_config
if not api_key:
raise ValueError(
"API key is not set. Please provide a valid API key in the "
"provider data header, e.g. x-llamastack-provider-data: "
f'{{"{key_field}": "<API_KEY>"}}, or in the provider config.'
)
return api_key
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
model = await self.model_store.get_model(model_id)
response = litellm.embedding(
model=self.get_litellm_model_name(model.provider_resource_id),
input=[interleaved_content_as_str(content) for content in contents],
)
embeddings = [data["embedding"] for data in response["data"]]
return EmbeddingsResponse(embeddings=embeddings)
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
model_obj = await self.model_store.get_model(model)
# Convert input to list if it's a string
input_list = [input] if isinstance(input, str) else input
# Call litellm embedding function
# litellm.drop_params = True
response = litellm.embedding(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
input=input_list,
api_key=self.get_api_key(),
api_base=self.api_base,
dimensions=dimensions,
)
# Convert response to OpenAI format
data = b64_encode_openai_embeddings_response(response.data, encoding_format)
usage = OpenAIEmbeddingUsage(
prompt_tokens=response["usage"]["prompt_tokens"],
total_tokens=response["usage"]["total_tokens"],
)
return OpenAIEmbeddingsResponse(
data=data,
model=model_obj.provider_resource_id,
usage=usage,
)
async def openai_completion(
self,
model: str,
prompt: str | list[str] | list[int] | list[list[int]],
best_of: int | None = None,
echo: bool | None = None,
frequency_penalty: float | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_tokens: int | None = None,
n: int | None = None,
presence_penalty: float | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
top_p: float | None = None,
user: str | None = None,
guided_choice: list[str] | None = None,
prompt_logprobs: int | None = None,
suffix: str | None = None,
) -> OpenAICompletion:
model_obj = await self.model_store.get_model(model)
params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
prompt=prompt,
best_of=best_of,
echo=echo,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
logprobs=logprobs,
max_tokens=max_tokens,
n=n,
presence_penalty=presence_penalty,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
top_p=top_p,
user=user,
guided_choice=guided_choice,
prompt_logprobs=prompt_logprobs,
api_key=self.get_api_key(),
api_base=self.api_base,
)
return await litellm.atext_completion(**params)
async def openai_chat_completion(
self,
model: str,
messages: list[OpenAIMessageParam],
frequency_penalty: float | None = None,
function_call: str | dict[str, Any] | None = None,
functions: list[dict[str, Any]] | None = None,
logit_bias: dict[str, float] | None = None,
logprobs: bool | None = None,
max_completion_tokens: int | None = None,
max_tokens: int | None = None,
n: int | None = None,
parallel_tool_calls: bool | None = None,
presence_penalty: float | None = None,
response_format: OpenAIResponseFormatParam | None = None,
seed: int | None = None,
stop: str | list[str] | None = None,
stream: bool | None = None,
stream_options: dict[str, Any] | None = None,
temperature: float | None = None,
tool_choice: str | dict[str, Any] | None = None,
tools: list[dict[str, Any]] | None = None,
top_logprobs: int | None = None,
top_p: float | None = None,
user: str | None = None,
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
# Add usage tracking for streaming when telemetry is active
from llama_stack.providers.utils.telemetry.tracing import get_current_span
if stream and get_current_span() is not None:
if stream_options is None:
stream_options = {"include_usage": True}
elif "include_usage" not in stream_options:
stream_options = {**stream_options, "include_usage": True}
model_obj = await self.model_store.get_model(model)
params = await prepare_openai_completion_params(
model=self.get_litellm_model_name(model_obj.provider_resource_id),
messages=messages,
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
n=n,
parallel_tool_calls=parallel_tool_calls,
presence_penalty=presence_penalty,
response_format=response_format,
seed=seed,
stop=stop,
stream=stream,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
api_key=self.get_api_key(),
api_base=self.api_base,
)
return await litellm.acompletion(**params)
async def check_model_availability(self, model: str) -> bool:
"""
Check if a specific model is available via LiteLLM for the current
provider (self.litellm_provider_name).
:param model: The model identifier to check.
:return: True if the model is available dynamically, False otherwise.
"""
if self.litellm_provider_name not in litellm.models_by_provider:
logger.error(f"Provider {self.litellm_provider_name} is not registered in litellm.")
return False
return model in litellm.models_by_provider[self.litellm_provider_name]