llama-stack-mirror/tests/integration/suites.py
Ashwin Bharambe 81e44b06ff fix: harden storage semantics (#4118)
Fixes issues in the storage system by guaranteeing immediate durability
for responses and ensuring background writers stay alive. Three related
fixes:

* Responses to the OpenAI-compatible API now write directly to
Postgres/SQLite inside the request instead of detouring through an async
queue that might never drain; this restores the expected
read-after-write behavior and removes the "response not found" races
reported by users.

* The access-control shim was stamping owner_principal/access_attributes
as SQL NULL, which Postgres interprets as non-public rows; fixing it to
use the empty-string/JSON-null pattern means conversations and responses
stored without an authenticated user stay queryable (matching SQLite).

* The inference-store queue remains for batching, but its worker tasks
now start lazily on the live event loop so server startup doesn't cancel
them—writes keep flowing even when the stack is launched via llama stack
run.

Closes #4115

Added a matrix entry to test our "base" suite against Postgres as the
store.
2025-11-12 12:40:23 -08:00

202 lines
6.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
# Central definition of integration test suites. You can use these suites by passing --suite=name to pytest.
# For example:
#
# ```bash
# pytest tests/integration/ --suite=vision --setup=ollama
# ```
#
"""
Each suite defines what to run (roots). Suites can be run with different global setups defined in setups.py.
Setups provide environment variables and model defaults that can be reused across multiple suites.
CLI examples:
pytest tests/integration --suite=responses --setup=gpt
pytest tests/integration --suite=vision --setup=ollama
pytest tests/integration --suite=base --setup=vllm
"""
from pathlib import Path
from pydantic import BaseModel, Field
this_dir = Path(__file__).parent
class Suite(BaseModel):
name: str
roots: list[str]
default_setup: str | None = None
class Setup(BaseModel):
"""A reusable test configuration with environment and CLI defaults."""
name: str
description: str
defaults: dict[str, str | int] = Field(default_factory=dict)
env: dict[str, str] = Field(default_factory=dict)
# Global setups - can be used with any suite "technically" but in reality, some setups might work
# only for specific test suites.
SETUP_DEFINITIONS: dict[str, Setup] = {
"ollama": Setup(
name="ollama",
description="Local Ollama provider with text + safety models",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
},
defaults={
"text_model": "ollama/llama3.2:3b-instruct-fp16",
"embedding_model": "ollama/nomic-embed-text:v1.5",
"safety_model": "ollama/llama-guard3:1b",
"safety_shield": "llama-guard",
},
),
"ollama-vision": Setup(
name="ollama",
description="Local Ollama provider with a vision model",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
},
defaults={
"vision_model": "ollama/llama3.2-vision:11b",
"embedding_model": "ollama/nomic-embed-text:v1.5",
},
),
"ollama-postgres": Setup(
name="ollama-postgres",
description="Server-mode tests with Postgres-backed persistence",
env={
"OLLAMA_URL": "http://0.0.0.0:11434",
"SAFETY_MODEL": "ollama/llama-guard3:1b",
"POSTGRES_HOST": "127.0.0.1",
"POSTGRES_PORT": "5432",
"POSTGRES_DB": "llamastack",
"POSTGRES_USER": "llamastack",
"POSTGRES_PASSWORD": "llamastack",
"LLAMA_STACK_LOGGING": "openai_responses=info",
},
defaults={
"text_model": "ollama/llama3.2:3b-instruct-fp16",
"embedding_model": "sentence-transformers/nomic-embed-text-v1.5",
"safety_model": "ollama/llama-guard3:1b",
"safety_shield": "llama-guard",
},
),
"vllm": Setup(
name="vllm",
description="vLLM provider with a text model",
env={
"VLLM_URL": "http://localhost:8000/v1",
},
defaults={
"text_model": "vllm/meta-llama/Llama-3.2-1B-Instruct",
"embedding_model": "sentence-transformers/nomic-embed-text-v1.5",
},
),
"gpt": Setup(
name="gpt",
description="OpenAI GPT models for high-quality responses and tool calling",
defaults={
"text_model": "openai/gpt-4o",
"embedding_model": "openai/text-embedding-3-small",
"embedding_dimension": 1536,
},
),
"tgi": Setup(
name="tgi",
description="Text Generation Inference (TGI) provider with a text model",
env={
"TGI_URL": "http://localhost:8080",
},
defaults={
"text_model": "tgi/Qwen/Qwen3-0.6B",
},
),
"together": Setup(
name="together",
description="Together computer models",
defaults={
"text_model": "together/meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
"embedding_model": "together/togethercomputer/m2-bert-80M-32k-retrieval",
},
),
"cerebras": Setup(
name="cerebras",
description="Cerebras models",
defaults={
"text_model": "cerebras/llama-3.3-70b",
},
),
"databricks": Setup(
name="databricks",
description="Databricks models",
defaults={
"text_model": "databricks/databricks-meta-llama-3-3-70b-instruct",
"embedding_model": "databricks/databricks-bge-large-en",
},
),
"fireworks": Setup(
name="fireworks",
description="Fireworks provider with a text model",
defaults={
"text_model": "fireworks/accounts/fireworks/models/llama-v3p1-8b-instruct",
"embedding_model": "fireworks/accounts/fireworks/models/qwen3-embedding-8b",
},
),
"anthropic": Setup(
name="anthropic",
description="Anthropic Claude models",
defaults={
"text_model": "anthropic/claude-3-5-haiku-20241022",
},
),
"llama-api": Setup(
name="llama-openai-compat",
description="Llama models from https://api.llama.com",
defaults={
"text_model": "llama_openai_compat/Llama-3.3-8B-Instruct",
},
),
"groq": Setup(
name="groq",
description="Groq models",
defaults={
"text_model": "groq/llama-3.3-70b-versatile",
},
),
}
base_roots = [
str(p)
for p in this_dir.glob("*")
if p.is_dir()
and p.name not in ("__pycache__", "fixtures", "test_cases", "recordings", "responses", "post_training")
]
SUITE_DEFINITIONS: dict[str, Suite] = {
"base": Suite(
name="base",
roots=base_roots,
default_setup="ollama",
),
"responses": Suite(
name="responses",
roots=["tests/integration/responses"],
default_setup="gpt",
),
"vision": Suite(
name="vision",
roots=["tests/integration/inference/test_vision_inference.py"],
default_setup="ollama-vision",
),
}