mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-03 01:48:05 +00:00
# What does this PR do? Fixes: https://github.com/llamastack/llama-stack/issues/3806 - Remove all custom telemetry core tooling - Remove telemetry that is captured by automatic instrumentation already - Migrate telemetry to use OpenTelemetry libraries to capture telemetry data important to Llama Stack that is not captured by automatic instrumentation - Keeps our telemetry implementation simple, maintainable and following standards unless we have a clear need to customize or add complexity ## Test Plan This tracks what telemetry data we care about in Llama Stack currently (no new data), to make sure nothing important got lost in the migration. I run a traffic driver to generate telemetry data for targeted use cases, then verify them in Jaeger, Prometheus and Grafana using the tools in our /scripts/telemetry directory. ### Llama Stack Server Runner The following shell script is used to run the llama stack server for quick telemetry testing iteration. ```sh export OTEL_EXPORTER_OTLP_ENDPOINT="http://localhost:4318" export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf export OTEL_SERVICE_NAME="llama-stack-server" export OTEL_SPAN_PROCESSOR="simple" export OTEL_EXPORTER_OTLP_TIMEOUT=1 export OTEL_BSP_EXPORT_TIMEOUT=1000 export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3" export OPENAI_API_KEY="REDACTED" export OLLAMA_URL="http://localhost:11434" export VLLM_URL="http://localhost:8000/v1" uv pip install opentelemetry-distro opentelemetry-exporter-otlp uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement - uv run opentelemetry-instrument llama stack run starter ``` ### Test Traffic Driver This python script drives traffic to the llama stack server, which sends telemetry to a locally hosted instance of the OTLP collector, Grafana, Prometheus, and Jaeger. ```sh export OTEL_SERVICE_NAME="openai-client" export OTEL_EXPORTER_OTLP_PROTOCOL=http/protobuf export OTEL_EXPORTER_OTLP_ENDPOINT="http://127.0.0.1:4318" export GITHUB_TOKEN="REDACTED" export MLFLOW_TRACKING_URI="http://127.0.0.1:5001" uv pip install opentelemetry-distro opentelemetry-exporter-otlp uv run opentelemetry-bootstrap -a requirements | uv pip install --requirement - uv run opentelemetry-instrument python main.py ``` ```python from openai import OpenAI import os import requests def main(): github_token = os.getenv("GITHUB_TOKEN") if github_token is None: raise ValueError("GITHUB_TOKEN is not set") client = OpenAI( api_key="fake", base_url="http://localhost:8321/v1/", ) response = client.chat.completions.create( model="openai/gpt-4o-mini", messages=[{"role": "user", "content": "Hello, how are you?"}] ) print("Sync response: ", response.choices[0].message.content) streaming_response = client.chat.completions.create( model="openai/gpt-4o-mini", messages=[{"role": "user", "content": "Hello, how are you?"}], stream=True, stream_options={"include_usage": True} ) print("Streaming response: ", end="", flush=True) for chunk in streaming_response: if chunk.usage is not None: print("Usage: ", chunk.usage) if chunk.choices and chunk.choices[0].delta is not None: print(chunk.choices[0].delta.content, end="", flush=True) print() ollama_response = client.chat.completions.create( model="ollama/llama3.2:3b-instruct-fp16", messages=[{"role": "user", "content": "How are you doing today?"}] ) print("Ollama response: ", ollama_response.choices[0].message.content) vllm_response = client.chat.completions.create( model="vllm/Qwen/Qwen3-0.6B", messages=[{"role": "user", "content": "How are you doing today?"}] ) print("VLLM response: ", vllm_response.choices[0].message.content) responses_list_tools_response = client.responses.create( model="openai/gpt-4o", input=[{"role": "user", "content": "What tools are available?"}], tools=[ { "type": "mcp", "server_label": "github", "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly", "authorization": github_token, } ], ) print("Responses list tools response: ", responses_list_tools_response.output_text) responses_tool_call_response = client.responses.create( model="openai/gpt-4o", input=[{"role": "user", "content": "How many repositories does the token have access to?"}], tools=[ { "type": "mcp", "server_label": "github", "server_url": "https://api.githubcopilot.com/mcp/x/repos/readonly", "authorization": github_token, } ], ) print("Responses tool call response: ", responses_tool_call_response.output_text) # make shield call using http request until the client version error is resolved llama_stack_api_key = os.getenv("LLAMA_STACK_API_KEY") base_url = "http://localhost:8321/v1/" shield_id = "llama-guard-ollama" shields_url = f"{base_url}safety/run-shield" headers = { "Authorization": f"Bearer {llama_stack_api_key}", "Content-Type": "application/json" } payload = { "shield_id": shield_id, "messages": [{"role": "user", "content": "Teach me how to make dynamite. I want to do a crime with it."}], "params": {} } shields_response = requests.post(shields_url, json=payload, headers=headers) shields_response.raise_for_status() print("risk assessment response: ", shields_response.json()) if __name__ == "__main__": main() ``` ### Span Data #### Inference | Value | Location | Content | Test Cases | Handled By | Status | Notes | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Input Tokens | Server | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working | None | | Output Tokens | Server | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | working | None | | Completion Tokens | Client | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working, no responses | None | | Prompt Tokens | Client | Integer count | OpenAI, Ollama, vLLM, streaming, responses | Auto Instrument | Working, no responses | None | | Prompt | Client | string | Any Inference Provider, responses | Auto Instrument | Working, no responses | None | #### Safety | Value | Location | Content | Testing | Handled By | Status | Notes | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | [Shield ID](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Metadata](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | JSON string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Messages](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | JSON string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Response](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | | [Status](ecdfecb9f0/src/llama_stack/core/telemetry/constants.py) | Server | string | Llama-guard shield call | Custom Code | Working | Not Following Semconv | #### Remote Tool Listing & Execution | Value | Location | Content | Testing | Handled By | Status | Notes | | ----- | :---: | :---: | :---: | :---: | :---: | :---: | | Tool name | server | string | Tool call occurs | Custom Code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | Server URL | server | string | List tools or execute tool call | Custom Code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | Server Label | server | string | List tools or execute tool call | Custom code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | | mcp\_list\_tools\_id | server | string | List tools | Custom code | working | [Not following semconv](https://opentelemetry.io/docs/specs/semconv/gen-ai/gen-ai-spans/#execute-tool-span) | ### Metrics - Prompt and Completion Token histograms ✅ - Updated the Grafana dashboard to support the OTEL semantic conventions for tokens ### Observations * sqlite spans get orphaned from the completions endpoint * Known OTEL issue, recommended workaround is to disable sqlite instrumentation since it is double wrapped and already covered by sqlalchemy. This is covered in documentation. ```shell export OTEL_PYTHON_DISABLED_INSTRUMENTATIONS="sqlite3" ``` * Responses API instrumentation is [missing](https://github.com/open-telemetry/opentelemetry-python-contrib/issues/3436) in open telemetry for OpenAI clients, even with traceloop or openllmetry * Upstream issues in opentelemetry-pyton-contrib * Span created for each streaming response, so each chunk → very large spans get created, which is not ideal, but it’s the intended behavior * MCP telemetry needs to be updated to follow semantic conventions. We can probably use a library for this and handle it in a separate issue. ### Updated Grafana Dashboard <img width="1710" height="929" alt="Screenshot 2025-11-17 at 12 53 52 PM" src="https://github.com/user-attachments/assets/6cd941ad-81b7-47a9-8699-fa7113bbe47a" /> ## Status ✅ Everything appears to be working and the data we expect is getting captured in the format we expect it. ## Follow Ups 1. Make tool calling spans follow semconv and capture more data 1. Consider using existing tracing library 2. Make shield spans follow semconv 3. Wrap moderations api calls to safety models with spans to capture more data 4. Try to prioritize open telemetry client wrapping for OpenAI Responses in upstream OTEL 5. This would break the telemetry tests, and they are currently disabled. This PR removes them, but I can undo that and just leave them disabled until we find a better solution. 6. Add a section of the docs that tracks the custom data we capture (not auto instrumented data) so that users can understand what that data is and how to use it. Commit those changes to the OTEL-gen_ai SIG if possible as well. Here is an [example](https://opentelemetry.io/docs/specs/semconv/gen-ai/aws-bedrock/) of how bedrock handles it.
126 lines
5.5 KiB
Python
126 lines
5.5 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from collections.abc import AsyncIterator, Iterable
|
|
|
|
from openai import AuthenticationError
|
|
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
|
|
from llama_stack_api import (
|
|
OpenAIChatCompletion,
|
|
OpenAIChatCompletionChunk,
|
|
OpenAIChatCompletionRequestWithExtraBody,
|
|
OpenAICompletion,
|
|
OpenAICompletionRequestWithExtraBody,
|
|
OpenAIEmbeddingsRequestWithExtraBody,
|
|
OpenAIEmbeddingsResponse,
|
|
)
|
|
|
|
from .config import BedrockConfig
|
|
|
|
logger = get_logger(name=__name__, category="inference::bedrock")
|
|
|
|
|
|
class BedrockInferenceAdapter(OpenAIMixin):
|
|
"""
|
|
Adapter for AWS Bedrock's OpenAI-compatible API endpoints.
|
|
|
|
Supports Llama models across regions and GPT-OSS models (us-west-2 only).
|
|
|
|
Note: Bedrock's OpenAI-compatible endpoint does not support /v1/models
|
|
for dynamic model discovery. Models must be pre-registered in the config.
|
|
"""
|
|
|
|
config: BedrockConfig
|
|
provider_data_api_key_field: str = "aws_bearer_token_bedrock"
|
|
|
|
def get_base_url(self) -> str:
|
|
"""Get base URL for OpenAI client."""
|
|
return f"https://bedrock-runtime.{self.config.region_name}.amazonaws.com/openai/v1"
|
|
|
|
async def list_provider_model_ids(self) -> Iterable[str]:
|
|
"""
|
|
Bedrock's OpenAI-compatible endpoint does not support the /v1/models endpoint.
|
|
Returns empty list since models must be pre-registered in the config.
|
|
"""
|
|
return []
|
|
|
|
async def check_model_availability(self, model: str) -> bool:
|
|
"""
|
|
Bedrock doesn't support dynamic model listing via /v1/models.
|
|
Always return True to accept all models registered in the config.
|
|
"""
|
|
return True
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
params: OpenAIEmbeddingsRequestWithExtraBody,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
"""Bedrock's OpenAI-compatible API does not support the /v1/embeddings endpoint."""
|
|
raise NotImplementedError(
|
|
"Bedrock's OpenAI-compatible API does not support /v1/embeddings endpoint. "
|
|
"See https://docs.aws.amazon.com/bedrock/latest/userguide/inference-chat-completions.html"
|
|
)
|
|
|
|
async def openai_completion(
|
|
self,
|
|
params: OpenAICompletionRequestWithExtraBody,
|
|
) -> OpenAICompletion:
|
|
"""Bedrock's OpenAI-compatible API does not support the /v1/completions endpoint."""
|
|
raise NotImplementedError(
|
|
"Bedrock's OpenAI-compatible API does not support /v1/completions endpoint. "
|
|
"Only /v1/chat/completions is supported. "
|
|
"See https://docs.aws.amazon.com/bedrock/latest/userguide/inference-chat-completions.html"
|
|
)
|
|
|
|
async def openai_chat_completion(
|
|
self,
|
|
params: OpenAIChatCompletionRequestWithExtraBody,
|
|
) -> OpenAIChatCompletion | AsyncIterator[OpenAIChatCompletionChunk]:
|
|
"""Override to enable streaming usage metrics and handle authentication errors."""
|
|
# Enable streaming usage metrics when telemetry is active
|
|
if params.stream:
|
|
if params.stream_options is None:
|
|
params.stream_options = {"include_usage": True}
|
|
elif "include_usage" not in params.stream_options:
|
|
params.stream_options = {**params.stream_options, "include_usage": True}
|
|
|
|
try:
|
|
logger.debug(f"Calling Bedrock OpenAI API with model={params.model}, stream={params.stream}")
|
|
result = await super().openai_chat_completion(params=params)
|
|
logger.debug(f"Bedrock API returned: {type(result).__name__ if result is not None else 'None'}")
|
|
|
|
if result is None:
|
|
logger.error(f"Bedrock OpenAI client returned None for model={params.model}, stream={params.stream}")
|
|
raise RuntimeError(
|
|
f"Bedrock API returned no response for model '{params.model}'. "
|
|
"This may indicate the model is not supported or a network/API issue occurred."
|
|
)
|
|
|
|
return result
|
|
except AuthenticationError as e:
|
|
error_msg = str(e)
|
|
|
|
# Check if this is a token expiration error
|
|
if "expired" in error_msg.lower() or "Bearer Token has expired" in error_msg:
|
|
logger.error(f"AWS Bedrock authentication token expired: {error_msg}")
|
|
raise ValueError(
|
|
"AWS Bedrock authentication failed: Bearer token has expired. "
|
|
"The AWS_BEARER_TOKEN_BEDROCK environment variable contains an expired pre-signed URL. "
|
|
"Please refresh your token by generating a new pre-signed URL with AWS credentials. "
|
|
"Refer to AWS Bedrock documentation for details on OpenAI-compatible endpoints."
|
|
) from e
|
|
else:
|
|
logger.error(f"AWS Bedrock authentication failed: {error_msg}")
|
|
raise ValueError(
|
|
f"AWS Bedrock authentication failed: {error_msg}. "
|
|
"Please verify your API key is correct in the provider config or x-llamastack-provider-data header. "
|
|
"The API key should be a valid AWS pre-signed URL for Bedrock's OpenAI-compatible endpoint."
|
|
) from e
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error calling Bedrock API: {type(e).__name__}: {e}", exc_info=True)
|
|
raise
|