mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-28 03:42:00 +00:00
33 lines
1.2 KiB
Python
33 lines
1.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from unittest.mock import AsyncMock, MagicMock
|
|
|
|
import pytest
|
|
|
|
from llama_stack.apis.vector_io import QueryChunksResponse
|
|
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
|
|
|
|
|
|
class TestRagQuery:
|
|
@pytest.mark.asyncio
|
|
async def test_query_raises_on_empty_vector_db_ids(self):
|
|
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
|
|
with pytest.raises(ValueError):
|
|
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_query_raises_on_no_chunks_found(self):
|
|
vector_io_api = MagicMock()
|
|
vector_io_api.query_chunks = AsyncMock(return_value=QueryChunksResponse(chunks=[], scores=[]))
|
|
|
|
rag_tool = MemoryToolRuntimeImpl(
|
|
config=MagicMock(),
|
|
vector_io_api=vector_io_api,
|
|
inference_api=MagicMock(),
|
|
)
|
|
with pytest.raises(ValueError):
|
|
await rag_tool.query(content=MagicMock(), vector_db_ids=["test_db"])
|