llama-stack-mirror/tests/unit/rag/test_rag_query.py
Francisco Arceo 82f13fe83e
feat: Add ChunkMetadata to Chunk (#2497)
# What does this PR do?
Adding `ChunkMetadata` so we can properly delete embeddings later.

More specifically, this PR refactors and extends the chunk metadata
handling in the vector database and introduces a distinction between
metadata used for model context and backend-only metadata required for
chunk management, storage, and retrieval. It also improves chunk ID
generation and propagation throughout the stack, enhances test coverage,
and adds new utility modules.

```python
class ChunkMetadata(BaseModel):
    """
    `ChunkMetadata` is backend metadata for a `Chunk` that is used to store additional information about the chunk that
        will NOT be inserted into the context during inference, but is required for backend functionality.
        Use `metadata` in `Chunk` for metadata that will be used during inference.
    """
    document_id: str | None = None
    chunk_id: str | None = None
    source: str | None = None
    created_timestamp: int | None = None
    updated_timestamp: int | None = None
    chunk_window: str | None = None
    chunk_tokenizer: str | None = None
    chunk_embedding_model: str | None = None
    chunk_embedding_dimension: int | None = None
    content_token_count: int | None = None
    metadata_token_count: int | None = None
```
Eventually we can migrate the document_id out of the `metadata` field.
I've introduced the changes so that `ChunkMetadata` is backwards
compatible with `metadata`.

<!-- If resolving an issue, uncomment and update the line below -->
Closes https://github.com/meta-llama/llama-stack/issues/2501 

## Test Plan
Added unit tests

---------

Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
2025-06-25 15:55:23 -04:00

62 lines
2.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from unittest.mock import AsyncMock, MagicMock
import pytest
from llama_stack.apis.vector_io import (
Chunk,
ChunkMetadata,
QueryChunksResponse,
)
from llama_stack.providers.inline.tool_runtime.rag.memory import MemoryToolRuntimeImpl
class TestRagQuery:
@pytest.mark.asyncio
async def test_query_raises_on_empty_vector_db_ids(self):
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
with pytest.raises(ValueError):
await rag_tool.query(content=MagicMock(), vector_db_ids=[])
@pytest.mark.asyncio
async def test_query_chunk_metadata_handling(self):
rag_tool = MemoryToolRuntimeImpl(config=MagicMock(), vector_io_api=MagicMock(), inference_api=MagicMock())
content = "test query content"
vector_db_ids = ["db1"]
chunk_metadata = ChunkMetadata(
document_id="doc1",
chunk_id="chunk1",
source="test_source",
metadata_token_count=5,
)
interleaved_content = MagicMock()
chunk = Chunk(
content=interleaved_content,
metadata={
"key1": "value1",
"token_count": 10,
"metadata_token_count": 5,
# Note this is inserted into `metadata` during MemoryToolRuntimeImpl().insert()
"document_id": "doc1",
},
stored_chunk_id="chunk1",
chunk_metadata=chunk_metadata,
)
query_response = QueryChunksResponse(chunks=[chunk], scores=[1.0])
rag_tool.vector_io_api.query_chunks = AsyncMock(return_value=query_response)
result = await rag_tool.query(content=content, vector_db_ids=vector_db_ids)
assert result is not None
expected_metadata_string = (
"Metadata: {'chunk_id': 'chunk1', 'document_id': 'doc1', 'source': 'test_source', 'key1': 'value1'}"
)
assert expected_metadata_string in result.content[1].text
assert result.content is not None