llama-stack-mirror/tests/integration/inference/test_openai_embeddings.py
Sébastien Han 833aa0ebd8
tests: adapt embedding tests for watsonx
Setting the dimension is not supported see:

```
openai.BadRequestError: Error code: 400 - {'detail': "litellm.UnsupportedParamsError: watsonx does not support parameters: {'dimensions': 384}
```

Successful run:

```
INFO     2025-10-14 14:32:20,353 tests.integration.conftest:50 tests: Test stack config type: library_client
         (stack_config=None)
======================================================== test session starts =========================================================
platform darwin -- Python 3.12.8, pytest-8.4.2, pluggy-1.6.0 -- /Users/leseb/Documents/AI/llama-stack/.venv/bin/python3
cachedir: .pytest_cache
metadata: {'Python': '3.12.8', 'Platform': 'macOS-26.0.1-arm64-arm-64bit', 'Packages': {'pytest': '8.4.2', 'pluggy': '1.6.0'}, 'Plugins': {'anyio': '4.9.0', 'html': '4.1.1', 'socket': '0.7.0', 'asyncio': '1.1.0', 'json-report': '1.5.0', 'timeout': '2.4.0', 'metadata': '3.1.1', 'cov': '6.2.1', 'nbval': '0.11.0'}}
rootdir: /Users/leseb/Documents/AI/llama-stack
configfile: pyproject.toml
plugins: anyio-4.9.0, html-4.1.1, socket-0.7.0, asyncio-1.1.0, json-report-1.5.0, timeout-2.4.0, metadata-3.1.1, cov-6.2.1, nbval-0.11.0
asyncio: mode=Mode.AUTO, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function
collected 20 items

tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_single_string[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [  5%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 10%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_float[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 15%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_dimensions[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] SKIPPED [ 20%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_user_parameter[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 25%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 30%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_invalid_model_error[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 35%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 40%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_base64[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] SKIPPED [ 45%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_base64_batch_processing[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 50%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_single_string[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 55%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 60%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_float[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 65%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_dimensions[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] SKIPPED [ 70%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_user_parameter[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 75%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 80%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_invalid_model_error[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 85%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [ 90%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_base64[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] SKIPPED [ 95%]
tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_base64_batch_processing[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr] PASSED [100%]

======================================================== slowest 10 durations ========================================================
1.84s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
1.62s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
1.23s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_empty_list_error[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.70s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.69s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_different_inputs_different_outputs[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.61s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_single_string[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.41s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_user_parameter[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.41s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_with_encoding_format_float[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.41s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_base64_batch_processing[llama_stack_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
0.38s call     tests/integration/inference/test_openai_embeddings.py::test_openai_embeddings_multiple_strings[openai_client-emb=watsonx/ibm/slate-30m-english-rtrvr]
====================================================== short test summary info =======================================================
SKIPPED [4] tests/integration/inference/test_openai_embeddings.py:63: Model watsonx/ibm/slate-30m-english-rtrvr hosted by remote::watsonx does not support variable output embedding dimensions.
============================================= 16 passed, 4 skipped, 1 warning in 10.23s ==============================================
```

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-10-14 14:46:21 +02:00

317 lines
12 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import struct
import pytest
from openai import OpenAI
from llama_stack.core.library_client import LlamaStackAsLibraryClient
def decode_base64_to_floats(base64_string: str) -> list[float]:
"""Helper function to decode base64 string to list of float32 values."""
embedding_bytes = base64.b64decode(base64_string)
float_count = len(embedding_bytes) // 4 # 4 bytes per float32
embedding_floats = struct.unpack(f"{float_count}f", embedding_bytes)
return list(embedding_floats)
def provider_from_model(client_with_models, model_id):
models = {m.identifier: m for m in client_with_models.models.list()}
models.update({m.provider_resource_id: m for m in client_with_models.models.list()})
provider_id = models[model_id].provider_id
providers = {p.provider_id: p for p in client_with_models.providers.list()}
return providers[provider_id]
def skip_if_model_doesnt_support_user_param(client, model_id):
provider = provider_from_model(client, model_id)
if provider.provider_type in (
"remote::together", # service returns 400
"remote::fireworks", # service returns 400 malformed input
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} does not support user param.")
def skip_if_model_doesnt_support_encoding_format_base64(client, model_id):
provider = provider_from_model(client, model_id)
if provider.provider_type in (
"remote::databricks", # param silently ignored, always returns floats
"remote::fireworks", # param silently ignored, always returns list of floats
"remote::ollama", # param silently ignored, always returns list of floats
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} does not support encoding_format='base64'.")
def skip_if_model_doesnt_support_variable_dimensions(client_with_models, model_id):
provider = provider_from_model(client_with_models, model_id)
if (
provider.provider_type
in (
"remote::together", # returns 400
"inline::sentence-transformers",
# Error code: 400 - {'error_code': 'BAD_REQUEST', 'message': 'Bad request: json: unknown field "dimensions"\n'}
"remote::databricks",
"remote::watsonx", # openai.BadRequestError: Error code: 400 - {'detail': "litellm.UnsupportedParamsError: watsonx does not support parameters: {'dimensions': 384}
)
):
pytest.skip(
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
)
if provider.provider_type == "remote::openai" and "text-embedding-3" not in model_id:
pytest.skip(
f"Model {model_id} hosted by {provider.provider_type} does not support variable output embedding dimensions."
)
@pytest.fixture(params=["openai_client", "llama_stack_client"])
def compat_client(request, client_with_models):
if request.param == "openai_client" and isinstance(client_with_models, LlamaStackAsLibraryClient):
pytest.skip("OpenAI client tests not supported with library client")
return request.getfixturevalue(request.param)
def skip_if_model_doesnt_support_openai_embeddings(client, model_id):
provider = provider_from_model(client, model_id)
if provider.provider_type in (
"inline::meta-reference",
"remote::bedrock",
"remote::cerebras",
"remote::runpod",
"remote::sambanova",
"remote::tgi",
):
pytest.skip(f"Model {model_id} hosted by {provider.provider_type} doesn't support OpenAI embeddings.")
@pytest.fixture
def openai_client(client_with_models):
base_url = f"{client_with_models.base_url}/v1"
return OpenAI(base_url=base_url, api_key="fake")
def test_openai_embeddings_single_string(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with a single string input."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
input_text = "Hello, world!"
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text,
encoding_format="float",
)
assert response.object == "list"
assert response.model == embedding_model_id
assert len(response.data) == 1
assert response.data[0].object == "embedding"
assert response.data[0].index == 0
assert isinstance(response.data[0].embedding, list)
assert len(response.data[0].embedding) > 0
assert all(isinstance(x, float) for x in response.data[0].embedding)
def test_openai_embeddings_multiple_strings(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with multiple string inputs."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
input_texts = ["Hello, world!", "How are you today?", "This is a test."]
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_texts,
encoding_format="float",
)
assert response.object == "list"
assert response.model == embedding_model_id
assert len(response.data) == len(input_texts)
for i, embedding_data in enumerate(response.data):
assert embedding_data.object == "embedding"
assert embedding_data.index == i
assert isinstance(embedding_data.embedding, list)
assert len(embedding_data.embedding) > 0
assert all(isinstance(x, float) for x in embedding_data.embedding)
def test_openai_embeddings_with_encoding_format_float(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with float encoding format."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
input_text = "Test encoding format"
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text,
encoding_format="float",
)
assert response.object == "list"
assert len(response.data) == 1
assert isinstance(response.data[0].embedding, list)
assert all(isinstance(x, float) for x in response.data[0].embedding)
def test_openai_embeddings_with_dimensions(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with custom dimensions parameter."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
skip_if_model_doesnt_support_variable_dimensions(client_with_models, embedding_model_id)
input_text = "Test dimensions parameter"
dimensions = 16
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text,
dimensions=dimensions,
)
assert response.object == "list"
assert len(response.data) == 1
# Note: Not all models support custom dimensions, so we don't assert the exact dimension
assert isinstance(response.data[0].embedding, list)
assert len(response.data[0].embedding) > 0
def test_openai_embeddings_with_user_parameter(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with user parameter."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
skip_if_model_doesnt_support_user_param(client_with_models, embedding_model_id)
input_text = "Test user parameter"
user_id = "test-user-123"
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text,
user=user_id,
)
assert response.object == "list"
assert len(response.data) == 1
assert isinstance(response.data[0].embedding, list)
assert len(response.data[0].embedding) > 0
def test_openai_embeddings_empty_list_error(compat_client, client_with_models, embedding_model_id):
"""Test that empty list input raises an appropriate error."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
with pytest.raises(Exception): # noqa: B017
compat_client.embeddings.create(
model=embedding_model_id,
input=[],
)
def test_openai_embeddings_invalid_model_error(compat_client, client_with_models, embedding_model_id):
"""Test that invalid model ID raises an appropriate error."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
with pytest.raises(Exception): # noqa: B017
compat_client.embeddings.create(
model="invalid-model-id",
input="Test text",
)
def test_openai_embeddings_different_inputs_different_outputs(compat_client, client_with_models, embedding_model_id):
"""Test that different inputs produce different embeddings."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
input_text1 = "This is the first text"
input_text2 = "This is completely different content"
response1 = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text1,
encoding_format="float",
)
response2 = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text2,
encoding_format="float",
)
embedding1 = response1.data[0].embedding
embedding2 = response2.data[0].embedding
assert len(embedding1) == len(embedding2)
# Embeddings should be different for different inputs
assert embedding1 != embedding2
def test_openai_embeddings_with_encoding_format_base64(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with base64 encoding format."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
skip_if_model_doesnt_support_encoding_format_base64(client_with_models, embedding_model_id)
skip_if_model_doesnt_support_variable_dimensions(client_with_models, embedding_model_id)
input_text = "Test base64 encoding format"
dimensions = 12
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_text,
encoding_format="base64",
dimensions=dimensions,
)
# Validate response structure
assert response.object == "list"
assert len(response.data) == 1
# With base64 encoding, embedding should be a string, not a list
embedding_data = response.data[0]
assert embedding_data.object == "embedding"
assert embedding_data.index == 0
assert isinstance(embedding_data.embedding, str)
# Verify it's valid base64 and decode to floats
embedding_floats = decode_base64_to_floats(embedding_data.embedding)
# Verify we got valid floats
assert len(embedding_floats) == dimensions, f"Got embedding length {len(embedding_floats)}, expected {dimensions}"
assert all(isinstance(x, float) for x in embedding_floats)
def test_openai_embeddings_base64_batch_processing(compat_client, client_with_models, embedding_model_id):
"""Test OpenAI embeddings endpoint with base64 encoding for batch processing."""
skip_if_model_doesnt_support_openai_embeddings(client_with_models, embedding_model_id)
skip_if_model_doesnt_support_encoding_format_base64(client_with_models, embedding_model_id)
input_texts = ["First text for base64", "Second text for base64", "Third text for base64"]
response = compat_client.embeddings.create(
model=embedding_model_id,
input=input_texts,
encoding_format="base64",
)
# Validate response structure
assert response.object == "list"
assert response.model == embedding_model_id
assert len(response.data) == len(input_texts)
# Validate each embedding in the batch
embedding_dimensions = []
for i, embedding_data in enumerate(response.data):
assert embedding_data.object == "embedding"
assert embedding_data.index == i
# With base64 encoding, embedding should be a string, not a list
assert isinstance(embedding_data.embedding, str)
embedding_floats = decode_base64_to_floats(embedding_data.embedding)
assert len(embedding_floats) > 0
assert all(isinstance(x, float) for x in embedding_floats)
embedding_dimensions.append(len(embedding_floats))
# All embeddings should have the same dimensionality
assert all(dim == embedding_dimensions[0] for dim in embedding_dimensions)