llama-stack-mirror/src/llama_stack_api/agents.py
Nathan DeMoss 836275d116
Enhance ResponseGuardrailSpec with additional fields
Added fields for guardrail configuration including description, enabled, severity, action, policy_id, version, categories, thresholds, max_violations, config, tags, and metadata.
2025-11-25 13:16:41 -05:00

202 lines
8.4 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncIterator
from typing import Annotated, Protocol, runtime_checkable, Any, Literal
from pydantic import BaseModel
from llama_stack_api.common.responses import Order
from llama_stack_api.schema_utils import ExtraBodyField, json_schema_type, webmethod
from llama_stack_api.version import LLAMA_STACK_API_V1
from .openai_responses import (
ListOpenAIResponseInputItem,
ListOpenAIResponseObject,
OpenAIDeleteResponseObject,
OpenAIResponseInput,
OpenAIResponseInputTool,
OpenAIResponseObject,
OpenAIResponseObjectStream,
OpenAIResponsePrompt,
OpenAIResponseText,
)
@json_schema_type
class ResponseGuardrailSpec(BaseModel):
"""Specification for a guardrail to apply during response generation.
Production-focused configuration allowing safety, moderation, and policy controls.
Fields
------
type: Identifier for the guardrail implementation (e.g. 'llama-guard', 'content-filter').
description: Human readable explanation / purpose.
enabled: Whether enforcement is active (default True).
severity: Severity classification for violations (info | warn | block).
action: Action when violation occurs (flag | block | redact | annotate). If omitted, provider default applies.
policy_id: Optional external policy/reference identifier to map violations to organizational policy.
version: Optional version of this guardrail configuration (for audit/rollback).
categories: List of safety/moderation categories this guardrail targets (e.g. ['violence','self-harm']).
thresholds: Per-category numeric thresholds (e.g. {'violence':0.8}). Semantics depend on provider.
max_violations: If set, cap number of violations before early termination.
config: Provider/model specific free-form settings (nested allowed).
tags: Arbitrary labels to assist analytics/telemetry and routing.
metadata: Arbitrary supplemental structured metadata for downstream logging.
"""
type: str
description: str | None = None
enabled: bool = True
severity: Literal["info", "warn", "block"] | None = None
action: Literal["flag", "block", "redact", "annotate"] | None = None
policy_id: str | None = None
version: str | None = None
categories: list[str] | None = None
thresholds: dict[str, float] | None = None
max_violations: int | None = None
config: dict[str, Any] | None = None
tags: list[str] | None = None
metadata: dict[str, Any] | None = None
model_config = {
"extra": "forbid",
"title": "ResponseGuardrailSpec",
}
@classmethod
def _non_empty(cls, value: str, field_name: str) -> str: # internal helper
if not value or not value.strip():
raise ValueError(f"{field_name} cannot be empty")
return value
@classmethod
def validate(cls, value: Any): # pydantic v2 uses model validators; minimal safeguard here if invoked directly
return value
def normalized(self) -> "ResponseGuardrailSpec":
"""Return a normalized copy (e.g., lower-casing categories, stripping whitespace)."""
if self.categories:
object.__setattr__(self, "categories", [c.strip().lower() for c in self.categories])
return self
ResponseGuardrail = str | ResponseGuardrailSpec
@runtime_checkable
class Agents(Protocol):
"""Agents
APIs for creating and interacting with agentic systems."""
# We situate the OpenAI Responses API in the Agents API just like we did things
# for Inference. The Responses API, in its intent, serves the same purpose as
# the Agents API above -- it is essentially a lightweight "agentic loop" with
# integrated tool calling.
#
# Both of these APIs are inherently stateful.
@webmethod(route="/responses/{response_id}", method="GET", level=LLAMA_STACK_API_V1)
async def get_openai_response(
self,
response_id: str,
) -> OpenAIResponseObject:
"""Get a model response.
:param response_id: The ID of the OpenAI response to retrieve.
:returns: An OpenAIResponseObject.
"""
...
@webmethod(route="/responses", method="POST", level=LLAMA_STACK_API_V1)
async def create_openai_response(
self,
input: str | list[OpenAIResponseInput],
model: str,
prompt: OpenAIResponsePrompt | None = None,
instructions: str | None = None,
parallel_tool_calls: bool | None = True,
previous_response_id: str | None = None,
conversation: str | None = None,
store: bool | None = True,
stream: bool | None = False,
temperature: float | None = None,
text: OpenAIResponseText | None = None,
tools: list[OpenAIResponseInputTool] | None = None,
include: list[str] | None = None,
max_infer_iters: int | None = 10, # this is an extension to the OpenAI API
guardrails: Annotated[
list[ResponseGuardrail] | None,
ExtraBodyField(
"List of guardrails to apply during response generation. Guardrails provide safety and content moderation."
),
] = None,
max_tool_calls: int | None = None,
) -> OpenAIResponseObject | AsyncIterator[OpenAIResponseObjectStream]:
"""Create a model response.
:param input: Input message(s) to create the response.
:param model: The underlying LLM used for completions.
:param prompt: (Optional) Prompt object with ID, version, and variables.
:param previous_response_id: (Optional) if specified, the new response will be a continuation of the previous response. This can be used to easily fork-off new responses from existing responses.
:param conversation: (Optional) The ID of a conversation to add the response to. Must begin with 'conv_'. Input and output messages will be automatically added to the conversation.
:param include: (Optional) Additional fields to include in the response.
:param guardrails: (Optional) List of guardrails to apply during response generation. Can be guardrail IDs (strings) or guardrail specifications.
:param max_tool_calls: (Optional) Max number of total calls to built-in tools that can be processed in a response.
:returns: An OpenAIResponseObject.
"""
...
@webmethod(route="/responses", method="GET", level=LLAMA_STACK_API_V1)
async def list_openai_responses(
self,
after: str | None = None,
limit: int | None = 50,
model: str | None = None,
order: Order | None = Order.desc,
) -> ListOpenAIResponseObject:
"""List all responses.
:param after: The ID of the last response to return.
:param limit: The number of responses to return.
:param model: The model to filter responses by.
:param order: The order to sort responses by when sorted by created_at ('asc' or 'desc').
:returns: A ListOpenAIResponseObject.
"""
...
@webmethod(route="/responses/{response_id}/input_items", method="GET", level=LLAMA_STACK_API_V1)
async def list_openai_response_input_items(
self,
response_id: str,
after: str | None = None,
before: str | None = None,
include: list[str] | None = None,
limit: int | None = 20,
order: Order | None = Order.desc,
) -> ListOpenAIResponseInputItem:
"""List input items.
:param response_id: The ID of the response to retrieve input items for.
:param after: An item ID to list items after, used for pagination.
:param before: An item ID to list items before, used for pagination.
:param include: Additional fields to include in the response.
:param limit: A limit on the number of objects to be returned. Limit can range between 1 and 100, and the default is 20.
:param order: The order to return the input items in. Default is desc.
:returns: An ListOpenAIResponseInputItem.
"""
...
@webmethod(route="/responses/{response_id}", method="DELETE", level=LLAMA_STACK_API_V1)
async def delete_openai_response(self, response_id: str) -> OpenAIDeleteResponseObject:
"""Delete a response.
:param response_id: The ID of the OpenAI response to delete.
:returns: An OpenAIDeleteResponseObject
"""
...