mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? 1) As per @mattf's suggestion, we want to mark the pytest as xfail for providers that do not support the functionality. In this diff, we xfail the logProbs inference tests for providers who does not support log probs. ( log probs is only supported by together, fireworks and vllm) 2) Added logProbs support for together according to their developer [doc](https://docs.together.ai/docs/logprobs). ## Test Plan 1) Together & Fireworks ``` export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/together/run.yaml /opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py ``` ``` tests/client-sdk/inference/test_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of planets in our solar system?-Earth] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of the planets that have rings around them?-Saturn] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_image_chat_completion_non_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_image_chat_completion_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED tests/client-sdk/inference/test_inference.py::test_image_chat_completion_base64_url[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED ========================================================================================== 15 passed, 2 warnings in 19.46s =========================================================================================== ``` ``` export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/fireworks/run.yaml /opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py ``` All tests passed 2) Ollama - LogProbs tests are marked as xfailed. ``` tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet) tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet) ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
370 lines
12 KiB
Python
370 lines
12 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, Dict, List, Optional, Union
|
|
|
|
from llama_models.datatypes import (
|
|
GreedySamplingStrategy,
|
|
SamplingParams,
|
|
TopKSamplingStrategy,
|
|
TopPSamplingStrategy,
|
|
)
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
from llama_models.llama3.api.datatypes import StopReason
|
|
from pydantic import BaseModel
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
ImageContentItem,
|
|
TextContentItem,
|
|
TextDelta,
|
|
ToolCallDelta,
|
|
ToolCallParseStatus,
|
|
)
|
|
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseEvent,
|
|
ChatCompletionResponseEventType,
|
|
ChatCompletionResponseStreamChunk,
|
|
CompletionMessage,
|
|
CompletionResponse,
|
|
CompletionResponseStreamChunk,
|
|
Message,
|
|
TokenLogProbs,
|
|
)
|
|
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
convert_image_content_to_url,
|
|
)
|
|
|
|
|
|
class OpenAICompatCompletionChoiceDelta(BaseModel):
|
|
content: str
|
|
|
|
|
|
class OpenAICompatLogprobs(BaseModel):
|
|
text_offset: Optional[List[int]] = None
|
|
|
|
token_logprobs: Optional[List[float]] = None
|
|
|
|
tokens: Optional[List[str]] = None
|
|
|
|
top_logprobs: Optional[List[Dict[str, float]]] = None
|
|
|
|
|
|
class OpenAICompatCompletionChoice(BaseModel):
|
|
finish_reason: Optional[str] = None
|
|
text: Optional[str] = None
|
|
delta: Optional[OpenAICompatCompletionChoiceDelta] = None
|
|
logprobs: Optional[OpenAICompatLogprobs] = None
|
|
|
|
|
|
class OpenAICompatCompletionResponse(BaseModel):
|
|
choices: List[OpenAICompatCompletionChoice]
|
|
|
|
|
|
def get_sampling_strategy_options(params: SamplingParams) -> dict:
|
|
options = {}
|
|
if isinstance(params.strategy, GreedySamplingStrategy):
|
|
options["temperature"] = 0.0
|
|
elif isinstance(params.strategy, TopPSamplingStrategy):
|
|
options["temperature"] = params.strategy.temperature
|
|
options["top_p"] = params.strategy.top_p
|
|
elif isinstance(params.strategy, TopKSamplingStrategy):
|
|
options["top_k"] = params.strategy.top_k
|
|
else:
|
|
raise ValueError(f"Unsupported sampling strategy: {params.strategy}")
|
|
|
|
return options
|
|
|
|
|
|
def get_sampling_options(params: SamplingParams) -> dict:
|
|
options = {}
|
|
if params:
|
|
options.update(get_sampling_strategy_options(params))
|
|
if params.max_tokens:
|
|
options["max_tokens"] = params.max_tokens
|
|
|
|
if params.repetition_penalty is not None and params.repetition_penalty != 1.0:
|
|
options["repeat_penalty"] = params.repetition_penalty
|
|
|
|
return options
|
|
|
|
|
|
def text_from_choice(choice) -> str:
|
|
if hasattr(choice, "delta") and choice.delta:
|
|
return choice.delta.content
|
|
|
|
if hasattr(choice, "message"):
|
|
return choice.message.content
|
|
|
|
return choice.text
|
|
|
|
|
|
def get_stop_reason(finish_reason: str) -> StopReason:
|
|
if finish_reason in ["stop", "eos"]:
|
|
return StopReason.end_of_turn
|
|
elif finish_reason == "eom":
|
|
return StopReason.end_of_message
|
|
elif finish_reason == "length":
|
|
return StopReason.out_of_tokens
|
|
|
|
return StopReason.out_of_tokens
|
|
|
|
|
|
def convert_openai_completion_logprobs(
|
|
logprobs: Optional[OpenAICompatLogprobs],
|
|
) -> Optional[List[TokenLogProbs]]:
|
|
if not logprobs:
|
|
return None
|
|
if hasattr(logprobs, "top_logprobs"):
|
|
return [TokenLogProbs(logprobs_by_token=x) for x in logprobs.top_logprobs]
|
|
|
|
# Together supports logprobs with top_k=1 only. This means for each token position,
|
|
# they return only the logprobs for the selected token (vs. the top n most likely tokens).
|
|
# Here we construct the response by matching the selected token with the logprobs.
|
|
if logprobs.tokens and logprobs.token_logprobs:
|
|
return [
|
|
TokenLogProbs(logprobs_by_token={token: token_lp})
|
|
for token, token_lp in zip(logprobs.tokens, logprobs.token_logprobs)
|
|
]
|
|
return None
|
|
|
|
|
|
def convert_openai_completion_logprobs_stream(
|
|
text: str, logprobs: Optional[Union[float, OpenAICompatLogprobs]]
|
|
):
|
|
if logprobs is None:
|
|
return None
|
|
if isinstance(logprobs, float):
|
|
# Adapt response from Together CompletionChoicesChunk
|
|
return [TokenLogProbs(logprobs_by_token={text: logprobs})]
|
|
if hasattr(logprobs, "top_logprobs"):
|
|
return [TokenLogProbs(logprobs_by_token=x) for x in logprobs.top_logprobs]
|
|
return None
|
|
|
|
|
|
def process_completion_response(
|
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
|
) -> CompletionResponse:
|
|
choice = response.choices[0]
|
|
# drop suffix <eot_id> if present and return stop reason as end of turn
|
|
if choice.text.endswith("<|eot_id|>"):
|
|
return CompletionResponse(
|
|
stop_reason=StopReason.end_of_turn,
|
|
content=choice.text[: -len("<|eot_id|>")],
|
|
logprobs=convert_openai_completion_logprobs(choice.logprobs),
|
|
)
|
|
# drop suffix <eom_id> if present and return stop reason as end of message
|
|
if choice.text.endswith("<|eom_id|>"):
|
|
return CompletionResponse(
|
|
stop_reason=StopReason.end_of_message,
|
|
content=choice.text[: -len("<|eom_id|>")],
|
|
logprobs=convert_openai_completion_logprobs(choice.logprobs),
|
|
)
|
|
return CompletionResponse(
|
|
stop_reason=get_stop_reason(choice.finish_reason),
|
|
content=choice.text,
|
|
logprobs=convert_openai_completion_logprobs(choice.logprobs),
|
|
)
|
|
|
|
|
|
def process_chat_completion_response(
|
|
response: OpenAICompatCompletionResponse, formatter: ChatFormat
|
|
) -> ChatCompletionResponse:
|
|
choice = response.choices[0]
|
|
|
|
raw_message = formatter.decode_assistant_message_from_content(
|
|
text_from_choice(choice), get_stop_reason(choice.finish_reason)
|
|
)
|
|
return ChatCompletionResponse(
|
|
completion_message=CompletionMessage(
|
|
content=raw_message.content,
|
|
stop_reason=raw_message.stop_reason,
|
|
tool_calls=raw_message.tool_calls,
|
|
),
|
|
logprobs=None,
|
|
)
|
|
|
|
|
|
async def process_completion_stream_response(
|
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
|
) -> AsyncGenerator:
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
choice = chunk.choices[0]
|
|
finish_reason = choice.finish_reason
|
|
|
|
text = text_from_choice(choice)
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
yield CompletionResponseStreamChunk(
|
|
delta=text,
|
|
stop_reason=stop_reason,
|
|
logprobs=convert_openai_completion_logprobs_stream(text, choice.logprobs),
|
|
)
|
|
if finish_reason:
|
|
if finish_reason in ["stop", "eos", "eos_token"]:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif finish_reason == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
yield CompletionResponseStreamChunk(
|
|
delta="",
|
|
stop_reason=stop_reason,
|
|
)
|
|
|
|
|
|
async def process_chat_completion_stream_response(
|
|
stream: AsyncGenerator[OpenAICompatCompletionResponse, None], formatter: ChatFormat
|
|
) -> AsyncGenerator:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.start,
|
|
delta=TextDelta(text=""),
|
|
)
|
|
)
|
|
|
|
buffer = ""
|
|
ipython = False
|
|
stop_reason = None
|
|
|
|
async for chunk in stream:
|
|
choice = chunk.choices[0]
|
|
finish_reason = choice.finish_reason
|
|
|
|
if finish_reason:
|
|
if stop_reason is None and finish_reason in ["stop", "eos", "eos_token"]:
|
|
stop_reason = StopReason.end_of_turn
|
|
elif stop_reason is None and finish_reason == "length":
|
|
stop_reason = StopReason.out_of_tokens
|
|
break
|
|
|
|
text = text_from_choice(choice)
|
|
if not text:
|
|
# Sometimes you get empty chunks from providers
|
|
continue
|
|
|
|
# check if its a tool call ( aka starts with <|python_tag|> )
|
|
if not ipython and text.startswith("<|python_tag|>"):
|
|
ipython = True
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call="",
|
|
parse_status=ToolCallParseStatus.started,
|
|
),
|
|
)
|
|
)
|
|
buffer += text
|
|
continue
|
|
|
|
if text == "<|eot_id|>":
|
|
stop_reason = StopReason.end_of_turn
|
|
text = ""
|
|
continue
|
|
elif text == "<|eom_id|>":
|
|
stop_reason = StopReason.end_of_message
|
|
text = ""
|
|
continue
|
|
|
|
if ipython:
|
|
buffer += text
|
|
delta = ToolCallDelta(
|
|
tool_call=text,
|
|
parse_status=ToolCallParseStatus.in_progress,
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=delta,
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
else:
|
|
buffer += text
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=TextDelta(text=text),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
# parse tool calls and report errors
|
|
message = formatter.decode_assistant_message_from_content(buffer, stop_reason)
|
|
parsed_tool_calls = len(message.tool_calls) > 0
|
|
if ipython and not parsed_tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call="",
|
|
parse_status=ToolCallParseStatus.failed,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
for tool_call in message.tool_calls:
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.progress,
|
|
delta=ToolCallDelta(
|
|
tool_call=tool_call,
|
|
parse_status=ToolCallParseStatus.succeeded,
|
|
),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
yield ChatCompletionResponseStreamChunk(
|
|
event=ChatCompletionResponseEvent(
|
|
event_type=ChatCompletionResponseEventType.complete,
|
|
delta=TextDelta(text=""),
|
|
stop_reason=stop_reason,
|
|
)
|
|
)
|
|
|
|
|
|
async def convert_message_to_openai_dict(
|
|
message: Message, download: bool = False
|
|
) -> dict:
|
|
async def _convert_content(content) -> dict:
|
|
if isinstance(content, ImageContentItem):
|
|
return {
|
|
"type": "image_url",
|
|
"image_url": {
|
|
"url": await convert_image_content_to_url(
|
|
content, download=download
|
|
),
|
|
},
|
|
}
|
|
else:
|
|
text = content.text if isinstance(content, TextContentItem) else content
|
|
assert isinstance(text, str)
|
|
return {"type": "text", "text": text}
|
|
|
|
if isinstance(message.content, list):
|
|
content = [await _convert_content(c) for c in message.content]
|
|
else:
|
|
content = [await _convert_content(message.content)]
|
|
|
|
return {
|
|
"role": message.role,
|
|
"content": content,
|
|
}
|