llama-stack-mirror/tests/client-sdk/inference/test_inference.py
Sixian Yi 836f47a82d
log probs - mark pytests as xfail for unsupported providers + add support for together (#883)
# What does this PR do?

1) As per @mattf's suggestion, we want to mark the pytest as xfail for
providers that do not support the functionality. In this diff, we xfail
the logProbs inference tests for providers who does not support log
probs.
( log probs is only supported by together, fireworks and vllm)

2) Added logProbs support for together according to their developer
[doc](https://docs.together.ai/docs/logprobs).

## Test Plan
1) Together & Fireworks
```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/together/run.yaml  
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
```
tests/client-sdk/inference/test_inference.py::test_text_completion_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of planets in our solar system?-Earth] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_non_streaming[meta-llama/Llama-3.1-8B-Instruct-What are the names of the planets that have rings around them?-Saturn] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What's the name of the Sun in latin?-Sol] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_streaming[meta-llama/Llama-3.1-8B-Instruct-What is the name of the US captial?-Washington] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_non_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_with_tool_calling_and_streaming[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_text_chat_completion_structured_output[meta-llama/Llama-3.1-8B-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_non_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_streaming[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED
tests/client-sdk/inference/test_inference.py::test_image_chat_completion_base64_url[meta-llama/Llama-3.2-11B-Vision-Instruct] PASSED

========================================================================================== 15 passed, 2 warnings in 19.46s ===========================================================================================
```

```
export LLAMA_STACK_CONFIG=/Users/sxyi/llama-stack/llama_stack/templates/fireworks/run.yaml   
/opt/miniconda3/envs/stack/bin/pytest -s -v /Users/sxyi/llama-stack/tests/client-sdk/inference/test_inference.py
```
All tests passed 

2) Ollama - LogProbs tests are marked as xfailed. 
```
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_non_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
tests/client-sdk/inference/test_inference.py::test_completion_log_probs_streaming[meta-llama/Llama-3.1-8B-Instruct] XFAIL (remote::ollama doesn't support log probs yet)
```
## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-29 23:41:25 -08:00

400 lines
13 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
import pytest
from pydantic import BaseModel
PROVIDER_TOOL_PROMPT_FORMAT = {
"remote::ollama": "json",
"remote::together": "json",
"remote::fireworks": "json",
}
PROVIDER_LOGPROBS_TOP_K = set(
{
"remote::together",
"remote::fireworks",
# "remote:vllm"
}
)
@pytest.fixture(scope="session")
def provider_tool_format(inference_provider_type):
return (
PROVIDER_TOOL_PROMPT_FORMAT[inference_provider_type]
if inference_provider_type in PROVIDER_TOOL_PROMPT_FORMAT
else None
)
@pytest.fixture(scope="session")
def inference_provider_type(llama_stack_client):
providers = llama_stack_client.providers.list()
inference_providers = [p for p in providers if p.api == "inference"]
assert len(inference_providers) > 0, "No inference providers found"
return inference_providers[0].provider_type
@pytest.fixture
def get_weather_tool_definition():
return {
"tool_name": "get_weather",
"description": "Get the current weather",
"parameters": {
"location": {
"param_type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
},
}
@pytest.fixture
def base64_image_url():
image_path = os.path.join(os.path.dirname(__file__), "dog.png")
with open(image_path, "rb") as image_file:
# Convert the image to base64
base64_string = base64.b64encode(image_file.read()).decode("utf-8")
base64_url = f"data:image/png;base64,{base64_string}"
return base64_url
def test_text_completion_non_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence using one word: Roses are red, violets are ",
stream=False,
model_id=text_model_id,
sampling_params={
"max_tokens": 50,
},
)
assert "blue" in response.content.lower().strip()
def test_text_completion_streaming(llama_stack_client, text_model_id):
response = llama_stack_client.inference.completion(
content="Complete the sentence using one word: Roses are red, violets are ",
stream=True,
model_id=text_model_id,
sampling_params={
"max_tokens": 50,
},
)
streamed_content = [chunk.delta for chunk in response]
assert "blue" in "".join(streamed_content).lower().strip()
def test_completion_log_probs_non_streaming(
llama_stack_client, text_model_id, inference_provider_type
):
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
response = llama_stack_client.inference.completion(
content="Complete the sentence: Micheael Jordan is born in ",
stream=False,
model_id=text_model_id,
sampling_params={
"max_tokens": 5,
},
logprobs={
"top_k": 1,
},
)
assert response.logprobs, "Logprobs should not be empty"
assert (
1 <= len(response.logprobs) <= 5
) # each token has 1 logprob and here max_tokens=5
assert all(len(logprob.logprobs_by_token) == 1 for logprob in response.logprobs)
def test_completion_log_probs_streaming(
llama_stack_client, text_model_id, inference_provider_type
):
if inference_provider_type not in PROVIDER_LOGPROBS_TOP_K:
pytest.xfail(f"{inference_provider_type} doesn't support log probs yet")
response = llama_stack_client.inference.completion(
content="Complete the sentence: Micheael Jordan is born in ",
stream=True,
model_id=text_model_id,
sampling_params={
"max_tokens": 5,
},
logprobs={
"top_k": 1,
},
)
streamed_content = [chunk for chunk in response]
for chunk in streamed_content:
if chunk.delta: # if there's a token, we expect logprobs
assert chunk.logprobs, "Logprobs should not be empty"
assert all(
len(logprob.logprobs_by_token) == 1 for logprob in chunk.logprobs
)
else: # no token, no logprobs
assert not chunk.logprobs, "Logprobs should be empty"
def test_text_completion_structured_output(
llama_stack_client, text_model_id, inference_provider_type
):
user_input = """
Michael Jordan was born in 1963. He played basketball for the Chicago Bulls. He retired in 2003.
"""
class AnswerFormat(BaseModel):
name: str
year_born: str
year_retired: str
response = llama_stack_client.inference.completion(
model_id=text_model_id,
content=user_input,
stream=False,
sampling_params={
"max_tokens": 50,
},
response_format={
"type": "json_schema",
"json_schema": AnswerFormat.model_json_schema(),
},
)
answer = AnswerFormat.model_validate_json(response.content)
assert answer.name == "Michael Jordan"
assert answer.year_born == "1963"
assert answer.year_retired == "2003"
@pytest.mark.parametrize(
"question,expected",
[
("What are the names of planets in our solar system?", "Earth"),
("What are the names of the planets that have rings around them?", "Saturn"),
],
)
def test_text_chat_completion_non_streaming(
llama_stack_client, text_model_id, question, expected
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{
"role": "user",
"content": question,
}
],
stream=False,
)
message_content = response.completion_message.content.lower().strip()
assert len(message_content) > 0
assert expected.lower() in message_content
@pytest.mark.parametrize(
"question,expected",
[
("What's the name of the Sun in latin?", "Sol"),
("What is the name of the US captial?", "Washington"),
],
)
def test_text_chat_completion_streaming(
llama_stack_client, text_model_id, question, expected
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[{"role": "user", "content": question}],
stream=True,
)
streamed_content = [
str(chunk.event.delta.text.lower().strip()) for chunk in response
]
assert len(streamed_content) > 0
assert expected.lower() in "".join(streamed_content)
def test_text_chat_completion_with_tool_calling_and_non_streaming(
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather like in San Francisco?"},
],
tools=[get_weather_tool_definition],
tool_choice="auto",
tool_prompt_format=provider_tool_format,
stream=False,
)
# No content is returned for the system message since we expect the
# response to be a tool call
assert response.completion_message.content == ""
assert response.completion_message.role == "assistant"
assert len(response.completion_message.tool_calls) == 1
assert response.completion_message.tool_calls[0].tool_name == "get_weather"
assert response.completion_message.tool_calls[0].arguments == {
"location": "San Francisco, CA"
}
# Will extract streamed text and separate it from tool invocation content
# The returned tool inovcation content will be a string so it's easy to comapare with expected value
# e.g. "[get_weather, {'location': 'San Francisco, CA'}]"
def extract_tool_invocation_content(response):
tool_invocation_content: str = ""
for chunk in response:
delta = chunk.event.delta
if delta.type == "tool_call" and delta.parse_status == "succeeded":
call = delta.tool_call
tool_invocation_content += f"[{call.tool_name}, {call.arguments}]"
return tool_invocation_content
def test_text_chat_completion_with_tool_calling_and_streaming(
llama_stack_client, text_model_id, get_weather_tool_definition, provider_tool_format
):
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What's the weather like in San Francisco?"},
],
tools=[get_weather_tool_definition],
tool_choice="auto",
tool_prompt_format=provider_tool_format,
stream=True,
)
tool_invocation_content = extract_tool_invocation_content(response)
assert tool_invocation_content == "[get_weather, {'location': 'San Francisco, CA'}]"
def test_text_chat_completion_structured_output(
llama_stack_client, text_model_id, inference_provider_type
):
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
response = llama_stack_client.inference.chat_completion(
model_id=text_model_id,
messages=[
{
"role": "system",
"content": "You are a helpful assistant. Michael Jordan was born in 1963. He played basketball for the Chicago Bulls for 15 seasons.",
},
{
"role": "user",
"content": "Please give me information about Michael Jordan.",
},
],
response_format={
"type": "json_schema",
"json_schema": AnswerFormat.model_json_schema(),
},
stream=False,
)
answer = AnswerFormat.model_validate_json(response.completion_message.content)
assert answer.first_name == "Michael"
assert answer.last_name == "Jordan"
assert answer.year_of_birth == 1963
assert answer.num_seasons_in_nba == 15
def test_image_chat_completion_non_streaming(llama_stack_client, vision_model_id):
message = {
"role": "user",
"content": [
{
"type": "image",
"image": {
"url": {
# TODO: Replace with Github based URI to resources/sample1.jpg
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
},
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = llama_stack_client.inference.chat_completion(
model_id=vision_model_id,
messages=[message],
stream=False,
)
message_content = response.completion_message.content.lower().strip()
assert len(message_content) > 0
assert any(expected in message_content for expected in {"dog", "puppy", "pup"})
def test_image_chat_completion_streaming(llama_stack_client, vision_model_id):
message = {
"role": "user",
"content": [
{
"type": "image",
"image": {
"url": {
# TODO: Replace with Github based URI to resources/sample1.jpg
"uri": "https://www.healthypawspetinsurance.com/Images/V3/DogAndPuppyInsurance/Dog_CTA_Desktop_HeroImage.jpg"
},
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = llama_stack_client.inference.chat_completion(
model_id=vision_model_id,
messages=[message],
stream=True,
)
streamed_content = ""
for chunk in response:
streamed_content += chunk.event.delta.text.lower()
assert len(streamed_content) > 0
assert any(expected in streamed_content for expected in {"dog", "puppy", "pup"})
def test_image_chat_completion_base64_url(
llama_stack_client, vision_model_id, base64_image_url
):
message = {
"role": "user",
"content": [
{
"type": "image",
"image": {
"url": {
"uri": base64_image_url,
},
},
},
{
"type": "text",
"text": "Describe what is in this image.",
},
],
}
response = llama_stack_client.inference.chat_completion(
model_id=vision_model_id,
messages=[message],
stream=False,
)
message_content = response.completion_message.content.lower().strip()
assert len(message_content) > 0