llama-stack-mirror/src/llama_stack/providers/remote/inference/together/together.py
Charlie Doern 840ad75fe9
feat: split API and provider specs into separate llama-stack-api pkg (#3895)
# What does this PR do?

Extract API definitions and provider specifications into a standalone
llama-stack-api package that can be published to PyPI independently of
the main llama-stack server.


see: https://github.com/llamastack/llama-stack/pull/2978 and
https://github.com/llamastack/llama-stack/pull/2978#issuecomment-3145115942

Motivation

External providers currently import from llama-stack, which overrides
the installed version and causes dependency conflicts. This separation
allows external providers to:

- Install only the type definitions they need without server
dependencies
- Avoid version conflicts with the installed llama-stack package
- Be versioned and released independently

This enables us to re-enable external provider module tests that were
previously blocked by these import conflicts.

Changes

- Created llama-stack-api package with minimal dependencies (pydantic,
jsonschema)
- Moved APIs, providers datatypes, strong_typing, and schema_utils
- Updated all imports from llama_stack.* to llama_stack_api.*
- Configured local editable install for development workflow
- Updated linting and type-checking configuration for both packages

Next Steps

- Publish llama-stack-api to PyPI
- Update external provider dependencies
- Re-enable external provider module tests


Pre-cursor PRs to this one:

- #4093 
- #3954 
- #4064 

These PRs moved key pieces _out_ of the Api pkg, limiting the scope of
change here.


relates to #3237 

## Test Plan

Package builds successfully and can be imported independently. All
pre-commit hooks pass with expected exclusions maintained.

---------

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-11-13 11:51:17 -08:00

106 lines
4.6 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import Iterable
from typing import Any, cast
from llama_stack_api import (
Model,
OpenAIEmbeddingsRequestWithExtraBody,
OpenAIEmbeddingsResponse,
OpenAIEmbeddingUsage,
)
from together import AsyncTogether # type: ignore[import-untyped]
from together.constants import BASE_URL # type: ignore[import-untyped]
from llama_stack.core.request_headers import NeedsRequestProviderData
from llama_stack.log import get_logger
from llama_stack.providers.utils.inference.openai_mixin import OpenAIMixin
from .config import TogetherImplConfig
logger = get_logger(name=__name__, category="inference::together")
class TogetherInferenceAdapter(OpenAIMixin, NeedsRequestProviderData):
config: TogetherImplConfig
embedding_model_metadata: dict[str, dict[str, int]] = {
"togethercomputer/m2-bert-80M-32k-retrieval": {"embedding_dimension": 768, "context_length": 32768},
"BAAI/bge-large-en-v1.5": {"embedding_dimension": 1024, "context_length": 512},
"BAAI/bge-base-en-v1.5": {"embedding_dimension": 768, "context_length": 512},
"Alibaba-NLP/gte-modernbert-base": {"embedding_dimension": 768, "context_length": 8192},
"intfloat/multilingual-e5-large-instruct": {"embedding_dimension": 1024, "context_length": 512},
}
_model_cache: dict[str, Model] = {}
provider_data_api_key_field: str = "together_api_key"
def get_base_url(self):
return BASE_URL
def _get_client(self) -> AsyncTogether:
together_api_key = None
config_api_key = self.config.auth_credential.get_secret_value() if self.config.auth_credential else None
if config_api_key:
together_api_key = config_api_key
else:
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.together_api_key:
raise ValueError(
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
)
together_api_key = provider_data.together_api_key
return AsyncTogether(api_key=together_api_key)
async def list_provider_model_ids(self) -> Iterable[str]:
# Together's /v1/models is not compatible with OpenAI's /v1/models. Together support ticket #13355 -> will not fix, use Together's own client
return [m.id for m in await self._get_client().models.list()]
async def openai_embeddings(
self,
params: OpenAIEmbeddingsRequestWithExtraBody,
) -> OpenAIEmbeddingsResponse:
"""
Together's OpenAI-compatible embeddings endpoint is not compatible with
the standard OpenAI embeddings endpoint.
The endpoint -
- not all models return usage information
- does not support user param, returns 400 Unrecognized request arguments supplied: user
- does not support dimensions param, returns 400 Unrecognized request arguments supplied: dimensions
"""
# Together support ticket #13332 -> will not fix
if params.user is not None:
raise ValueError("Together's embeddings endpoint does not support user param.")
# Together support ticket #13333 -> escalated
if params.dimensions is not None:
raise ValueError("Together's embeddings endpoint does not support dimensions param.")
# Cast encoding_format to match OpenAI SDK's expected Literal type
response = await self.client.embeddings.create(
model=await self._get_provider_model_id(params.model),
input=params.input,
encoding_format=cast(Any, params.encoding_format),
)
response.model = (
params.model
) # return the user the same model id they provided, avoid exposing the provider model id
# Together support ticket #13330 -> escalated
# - togethercomputer/m2-bert-80M-32k-retrieval *does not* return usage information
if not hasattr(response, "usage") or response.usage is None:
logger.warning(
f"Together's embedding endpoint for {params.model} did not return usage information, substituting -1s."
)
# Cast to allow monkey-patching the response object
response.usage = cast(Any, OpenAIEmbeddingUsage(prompt_tokens=-1, total_tokens=-1))
# Together's CreateEmbeddingResponse is compatible with OpenAIEmbeddingsResponse after monkey-patching
return cast(OpenAIEmbeddingsResponse, response)