mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
369 lines
13 KiB
Python
369 lines
13 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
"""
|
|
Integration tests for inference/chat completion with JSON Schema-based tools.
|
|
Tests that tools pass through correctly to various LLM providers.
|
|
"""
|
|
|
|
import json
|
|
|
|
import pytest
|
|
|
|
from llama_stack import LlamaStackAsLibraryClient
|
|
from llama_stack.models.llama.datatypes import ToolDefinition
|
|
from tests.common.mcp import make_mcp_server
|
|
|
|
AUTH_TOKEN = "test-token"
|
|
|
|
|
|
class TestChatCompletionWithTools:
|
|
"""Test chat completion with tools that have complex schemas."""
|
|
|
|
def test_simple_tool_call(self, llama_stack_client, text_model_id):
|
|
"""Test basic tool calling with simple input schema."""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get weather for a location",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string", "description": "City name"}},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "What's the weather in San Francisco?"}],
|
|
tools=tools,
|
|
)
|
|
|
|
assert response is not None
|
|
|
|
def test_tool_with_complex_schema(self, llama_stack_client, text_model_id):
|
|
"""Test tool calling with complex schema including $ref and $defs."""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "book_flight",
|
|
"description": "Book a flight",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"flight": {"$ref": "#/$defs/FlightInfo"},
|
|
"passenger": {"$ref": "#/$defs/Passenger"},
|
|
},
|
|
"required": ["flight", "passenger"],
|
|
"$defs": {
|
|
"FlightInfo": {
|
|
"type": "object",
|
|
"properties": {
|
|
"from": {"type": "string"},
|
|
"to": {"type": "string"},
|
|
"date": {"type": "string", "format": "date"},
|
|
},
|
|
},
|
|
"Passenger": {
|
|
"type": "object",
|
|
"properties": {"name": {"type": "string"}, "age": {"type": "integer"}},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Book a flight from SFO to JFK for John Doe"}],
|
|
tools=tools,
|
|
)
|
|
|
|
# The key test: No errors during schema processing
|
|
# The LLM received a valid, complete schema with $ref/$defs
|
|
assert response is not None
|
|
|
|
|
|
class TestOpenAICompatibility:
|
|
"""Test OpenAI-compatible endpoints with new schema format."""
|
|
|
|
def test_openai_chat_completion_with_tools(self, compat_client, text_model_id):
|
|
"""Test OpenAI-compatible chat completion with tools."""
|
|
from openai import OpenAI
|
|
|
|
if not isinstance(compat_client, OpenAI):
|
|
pytest.skip("OpenAI client required")
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_weather",
|
|
"description": "Get weather information",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"location": {"type": "string", "description": "City name"}},
|
|
"required": ["location"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = compat_client.chat.completions.create(
|
|
model=text_model_id, messages=[{"role": "user", "content": "What's the weather in Tokyo?"}], tools=tools
|
|
)
|
|
|
|
assert response is not None
|
|
assert response.choices is not None
|
|
|
|
def test_openai_format_preserves_complex_schemas(self, compat_client, text_model_id):
|
|
"""Test that complex schemas work through OpenAI-compatible API."""
|
|
from openai import OpenAI
|
|
|
|
if not isinstance(compat_client, OpenAI):
|
|
pytest.skip("OpenAI client required")
|
|
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "process_data",
|
|
"description": "Process structured data",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"data": {"$ref": "#/$defs/DataObject"}},
|
|
"$defs": {
|
|
"DataObject": {
|
|
"type": "object",
|
|
"properties": {"values": {"type": "array", "items": {"type": "number"}}},
|
|
}
|
|
},
|
|
},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = compat_client.chat.completions.create(
|
|
model=text_model_id, messages=[{"role": "user", "content": "Process this data"}], tools=tools
|
|
)
|
|
|
|
assert response is not None
|
|
|
|
|
|
class TestMCPToolsInChatCompletion:
|
|
"""Test using MCP tools in chat completion."""
|
|
|
|
@pytest.fixture
|
|
def mcp_with_schemas(self):
|
|
"""MCP server for chat completion tests."""
|
|
from mcp.server.fastmcp import Context
|
|
|
|
async def calculate(x: float, y: float, operation: str, ctx: Context) -> float:
|
|
ops = {"add": x + y, "sub": x - y, "mul": x * y, "div": x / y if y != 0 else None}
|
|
return ops.get(operation, 0)
|
|
|
|
with make_mcp_server(required_auth_token=AUTH_TOKEN, tools={"calculate": calculate}) as server:
|
|
yield server
|
|
|
|
def test_mcp_tools_in_inference(self, llama_stack_client, text_model_id, mcp_with_schemas):
|
|
"""Test that MCP tools can be used in inference."""
|
|
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
|
pytest.skip("Library client required for local MCP server")
|
|
|
|
test_toolgroup_id = "mcp::calc"
|
|
uri = mcp_with_schemas["server_url"]
|
|
|
|
try:
|
|
llama_stack_client.toolgroups.unregister(toolgroup_id=test_toolgroup_id)
|
|
except Exception:
|
|
pass
|
|
|
|
llama_stack_client.toolgroups.register(
|
|
toolgroup_id=test_toolgroup_id,
|
|
provider_id="model-context-protocol",
|
|
mcp_endpoint=dict(uri=uri),
|
|
)
|
|
|
|
provider_data = {"mcp_headers": {uri: {"Authorization": f"Bearer {AUTH_TOKEN}"}}}
|
|
auth_headers = {
|
|
"X-LlamaStack-Provider-Data": json.dumps(provider_data),
|
|
}
|
|
|
|
# Get the tools from MCP
|
|
tools_response = llama_stack_client.tool_runtime.list_tools(
|
|
tool_group_id=test_toolgroup_id,
|
|
extra_headers=auth_headers,
|
|
)
|
|
|
|
# Convert to OpenAI format for inference
|
|
tools = []
|
|
for tool in tools_response:
|
|
tools.append(
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": tool.name,
|
|
"description": tool.description,
|
|
"parameters": tool.input_schema or {},
|
|
},
|
|
}
|
|
)
|
|
|
|
# Use in chat completion
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Calculate 5 + 3"}],
|
|
tools=tools,
|
|
)
|
|
|
|
# Schema should have been passed through correctly
|
|
assert response is not None
|
|
|
|
|
|
class TestProviderSpecificBehavior:
|
|
"""Test provider-specific handling of schemas."""
|
|
|
|
def test_openai_provider_drops_output_schema(self, llama_stack_client, text_model_id):
|
|
"""Test that OpenAI provider doesn't send output_schema (API limitation)."""
|
|
# This is more of a documentation test
|
|
# OpenAI API doesn't support output schemas, so we drop them
|
|
|
|
_tool = ToolDefinition(
|
|
tool_name="test",
|
|
input_schema={"type": "object", "properties": {"x": {"type": "string"}}},
|
|
output_schema={"type": "object", "properties": {"y": {"type": "number"}}},
|
|
)
|
|
|
|
# When this tool is sent to OpenAI provider, output_schema is dropped
|
|
# But input_schema is preserved
|
|
# This test documents the expected behavior
|
|
|
|
# We can't easily test this without mocking, but the unit tests cover it
|
|
pass
|
|
|
|
def test_gemini_array_support(self):
|
|
"""Test that Gemini receives array schemas correctly (issue from commit 65f7b81e)."""
|
|
# This was the original bug that led to adding 'items' field
|
|
# Now with full JSON Schema pass-through, arrays should work
|
|
|
|
tool = ToolDefinition(
|
|
tool_name="tag_processor",
|
|
input_schema={
|
|
"type": "object",
|
|
"properties": {"tags": {"type": "array", "items": {"type": "string"}, "description": "List of tags"}},
|
|
},
|
|
)
|
|
|
|
# With new approach, the complete schema with items is preserved
|
|
assert tool.input_schema["properties"]["tags"]["type"] == "array"
|
|
assert tool.input_schema["properties"]["tags"]["items"]["type"] == "string"
|
|
|
|
|
|
class TestStreamingWithTools:
|
|
"""Test streaming chat completion with tools."""
|
|
|
|
def test_streaming_tool_calls(self, llama_stack_client, text_model_id):
|
|
"""Test that tool schemas work correctly in streaming mode."""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "get_time",
|
|
"description": "Get current time",
|
|
"parameters": {"type": "object", "properties": {"timezone": {"type": "string"}}},
|
|
},
|
|
}
|
|
]
|
|
|
|
response_stream = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "What time is it in UTC?"}],
|
|
tools=tools,
|
|
stream=True,
|
|
)
|
|
|
|
# Should be able to iterate through stream
|
|
chunks = []
|
|
for chunk in response_stream:
|
|
chunks.append(chunk)
|
|
|
|
# Should have received some chunks
|
|
assert len(chunks) >= 0
|
|
|
|
|
|
class TestEdgeCases:
|
|
"""Test edge cases in inference with tools."""
|
|
|
|
def test_tool_without_schema(self, llama_stack_client, text_model_id):
|
|
"""Test tool with no input_schema."""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "no_args_tool",
|
|
"description": "Tool with no arguments",
|
|
"parameters": {"type": "object", "properties": {}},
|
|
},
|
|
}
|
|
]
|
|
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Call the no args tool"}],
|
|
tools=tools,
|
|
)
|
|
|
|
assert response is not None
|
|
|
|
def test_multiple_tools_with_different_schemas(self, llama_stack_client, text_model_id):
|
|
"""Test multiple tools with different schema complexities."""
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "simple",
|
|
"parameters": {"type": "object", "properties": {"x": {"type": "string"}}},
|
|
},
|
|
},
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "complex",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {"data": {"$ref": "#/$defs/Complex"}},
|
|
"$defs": {
|
|
"Complex": {
|
|
"type": "object",
|
|
"properties": {"nested": {"type": "array", "items": {"type": "number"}}},
|
|
}
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "with_output",
|
|
"parameters": {"type": "object", "properties": {"input": {"type": "string"}}},
|
|
},
|
|
},
|
|
]
|
|
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Use one of the available tools"}],
|
|
tools=tools,
|
|
)
|
|
|
|
# All tools should have been processed without errors
|
|
assert response is not None
|