llama-stack-mirror/tests/unit/providers/nvidia/test_parameters.py
Jash Gulabrai 8713d67ce3
fix: Correctly parse algorithm_config when launching NVIDIA customization job; fix internal request handler (#2025)
# What does this PR do?
This addresses 2 bugs I ran into when launching a fine-tuning job with
the NVIDIA Adapter:
1. Session handling in `_make_request` helper function returns an error.
```
INFO:     127.0.0.1:55831 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 500 Internal Server Error
16:11:45.643 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (270.44ms)
 16:11:45.643 [ERROR] Error executing endpoint route='/v1/post-training/supervised-fine-tune' method='post'
Traceback (most recent call last):
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 201, in endpoint
    return await maybe_await(value)
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 161, in maybe_await
    return await value
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 408, in supervised_fine_tune
    response = await self._make_request(
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 98, in _make_request
    async with self.session.request(method, url, params=params, json=json, **kwargs) as response:
  File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/client.py", line 1425, in __aenter__
    self._resp: _RetType = await self._coro
  File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/client.py", line 579, in _request
    handle = tm.start()
  File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/aiohttp/helpers.py", line 587, in start
    return self._loop.call_at(when, self.__call__)
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/asyncio/base_events.py", line 724, in call_at
    self._check_closed()
  File "/Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/asyncio/base_events.py", line 510, in _check_closed
    raise RuntimeError('Event loop is closed')
RuntimeError: Event loop is closed
```
Note: This only occurred when initializing the client like so:
```
client = LlamaStackClient(
    base_url="http://0.0.0.0:8321"
)
response = client.post_training.supervised_fine_tune(...) # Returns error
```
I didn't run into this issue when using the library client:
```
client =  LlamaStackAsLibraryClient("nvidia")
client.initialize()
response = client.post_training.supervised_fine_tune(...) # Works fine
```

2. The `algorithm_config` param in `supervised_fine_tune` is parsed as a
`dict` when run from unit tests, but a Pydantic model when invoked using
the Llama Stack client. So, the call fails outside of unit tests:
```
INFO:     127.0.0.1:54024 - "POST /v1/post-training/supervised-fine-tune HTTP/1.1" 500 Internal Server Error
21:14:02.315 [END] /v1/post-training/supervised-fine-tune [StatusCode.OK] (71.18ms)
 21:14:02.314 [ERROR] Error executing endpoint route='/v1/post-training/supervised-fine-tune' method='post'
Traceback (most recent call last):
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 205, in endpoint
    return await maybe_await(value)
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/distribution/server/server.py", line 164, in maybe_await
    return await value
  File "/Users/jgulabrai/Projects/forks/llama-stack/llama_stack/providers/remote/post_training/nvidia/post_training.py", line 407, in supervised_fine_tune
    "adapter_dim": algorithm_config.get("adapter_dim"),
  File "/Users/jgulabrai/Projects/forks/llama-stack/.venv/lib/python3.10/site-packages/pydantic/main.py", line 891, in __getattr__
    raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
AttributeError: 'LoraFinetuningConfig' object has no attribute 'get'
```
The code assumes `algorithm_config` should be `dict`, so I just handle
both cases.

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
1. I ran a local Llama Stack server with the necessary env vars:
```
lama stack run llama_stack/templates/nvidia/run.yaml --port 8321 --env ...
```
And invoked `supervised_fine_tune` to confirm neither of the errors
above occur.
```
client = LlamaStackClient(
    base_url="http://0.0.0.0:8321"
)
response = client.post_training.supervised_fine_tune(...)
```
2. I confirmed the unit tests still pass: `./scripts/unit-tests.sh
tests/unit/providers/nvidia/test_supervised_fine_tuning.py`

[//]: # (## Documentation)

---------

Co-authored-by: Jash Gulabrai <jgulabrai@nvidia.com>
2025-04-25 13:21:50 -07:00

279 lines
9.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import os
import unittest
import warnings
from unittest.mock import patch
import pytest
from llama_stack.apis.post_training.post_training import (
DataConfig,
DatasetFormat,
EfficiencyConfig,
LoraFinetuningConfig,
OptimizerConfig,
OptimizerType,
TrainingConfig,
)
from llama_stack.distribution.library_client import convert_pydantic_to_json_value
from llama_stack.providers.remote.post_training.nvidia.post_training import (
NvidiaPostTrainingAdapter,
NvidiaPostTrainingConfig,
)
class TestNvidiaParameters(unittest.TestCase):
def setUp(self):
os.environ["NVIDIA_BASE_URL"] = "http://nemo.test"
os.environ["NVIDIA_CUSTOMIZER_URL"] = "http://nemo.test"
config = NvidiaPostTrainingConfig(
base_url=os.environ["NVIDIA_BASE_URL"], customizer_url=os.environ["NVIDIA_CUSTOMIZER_URL"], api_key=None
)
self.adapter = NvidiaPostTrainingAdapter(config)
self.make_request_patcher = patch(
"llama_stack.providers.remote.post_training.nvidia.post_training.NvidiaPostTrainingAdapter._make_request"
)
self.mock_make_request = self.make_request_patcher.start()
self.mock_make_request.return_value = {
"id": "job-123",
"status": "created",
"created_at": "2025-03-04T13:07:47.543605",
"updated_at": "2025-03-04T13:07:47.543605",
}
def tearDown(self):
self.make_request_patcher.stop()
def _assert_request_params(self, expected_json):
"""Helper method to verify parameters in the request JSON."""
call_args = self.mock_make_request.call_args
actual_json = call_args[1]["json"]
for key, value in expected_json.items():
if isinstance(value, dict):
for nested_key, nested_value in value.items():
assert actual_json[key][nested_key] == nested_value
else:
assert actual_json[key] == value
@pytest.fixture(autouse=True)
def inject_fixtures(self, run_async):
self.run_async = run_async
def test_customizer_parameters_passed(self):
"""Test scenario 1: When an optional parameter is passed and value is correctly set."""
algorithm_config = LoraFinetuningConfig(
type="LoRA",
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = DataConfig(
dataset_id="test-dataset", batch_size=16, shuffle=False, data_format=DatasetFormat.instruct
)
optimizer_config = OptimizerConfig(
optimizer_type=OptimizerType.adam,
lr=0.0002,
weight_decay=0.01,
num_warmup_steps=100,
)
training_config = TrainingConfig(
n_epochs=3,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="test-job",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=convert_pydantic_to_json_value(training_config),
logger_config={},
hyperparam_search_config={},
)
)
warning_texts = [str(warning.message) for warning in w]
fields = [
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
self._assert_request_params(
{
"hyperparameters": {
"lora": {"alpha": 16},
"epochs": 3,
"learning_rate": 0.0002,
"batch_size": 16,
}
}
)
def test_required_parameters_passed(self):
"""Test scenario 2: When required parameters are passed."""
required_model = "meta-llama/Llama-3.1-8B-Instruct"
required_dataset_id = "required-dataset"
required_job_uuid = "required-job"
algorithm_config = LoraFinetuningConfig(
type="LoRA",
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
)
data_config = DataConfig(
dataset_id=required_dataset_id, batch_size=8, shuffle=False, data_format=DatasetFormat.instruct
)
optimizer_config = OptimizerConfig(
optimizer_type=OptimizerType.adam,
lr=0.0001,
weight_decay=0.01,
num_warmup_steps=100,
)
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
optimizer_config=optimizer_config,
)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid=required_job_uuid, # Required parameter
model=required_model, # Required parameter
checkpoint_dir="",
algorithm_config=algorithm_config,
training_config=convert_pydantic_to_json_value(training_config),
logger_config={},
hyperparam_search_config={},
)
)
warning_texts = [str(warning.message) for warning in w]
fields = [
"rank",
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
self.mock_make_request.assert_called_once()
call_args = self.mock_make_request.call_args
assert call_args[1]["json"]["config"] == "meta/llama-3.1-8b-instruct"
assert call_args[1]["json"]["dataset"]["name"] == required_dataset_id
def test_unsupported_parameters_warning(self):
"""Test that warnings are raised for unsupported parameters."""
data_config = DataConfig(
dataset_id="test-dataset",
batch_size=8,
# Unsupported parameters
shuffle=True,
data_format=DatasetFormat.instruct,
validation_dataset_id="val-dataset",
)
optimizer_config = OptimizerConfig(
lr=0.0001,
weight_decay=0.01,
# Unsupported parameters
optimizer_type=OptimizerType.adam,
num_warmup_steps=100,
)
efficiency_config = EfficiencyConfig(
enable_activation_checkpointing=True # Unsupported parameter
)
training_config = TrainingConfig(
n_epochs=1,
data_config=data_config,
optimizer_config=optimizer_config,
# Unsupported parameters
efficiency_config=efficiency_config,
max_steps_per_epoch=1000,
gradient_accumulation_steps=4,
max_validation_steps=100,
dtype="bf16",
)
# Capture warnings
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
self.run_async(
self.adapter.supervised_fine_tune(
job_uuid="test-job",
model="meta-llama/Llama-3.1-8B-Instruct",
checkpoint_dir="test-dir", # Unsupported parameter
algorithm_config=LoraFinetuningConfig(
type="LoRA",
apply_lora_to_mlp=True,
apply_lora_to_output=True,
alpha=16,
rank=16,
lora_attn_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
),
training_config=convert_pydantic_to_json_value(training_config),
logger_config={"test": "value"}, # Unsupported parameter
hyperparam_search_config={"test": "value"}, # Unsupported parameter
)
)
assert len(w) >= 4
warning_texts = [str(warning.message) for warning in w]
fields = [
"checkpoint_dir",
"hyperparam_search_config",
"logger_config",
"TrainingConfig",
"DataConfig",
"OptimizerConfig",
"max_steps_per_epoch",
"gradient_accumulation_steps",
"max_validation_steps",
"dtype",
# required unsupported parameters
"rank",
"apply_lora_to_output",
"lora_attn_modules",
"apply_lora_to_mlp",
]
for field in fields:
assert any(field in text for text in warning_texts)
if __name__ == "__main__":
unittest.main()