mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
# What does this PR do? the /inference/completion route is gone. this removes the implementations. ## Test Plan ci
237 lines
8 KiB
Python
237 lines
8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from collections.abc import AsyncGenerator, AsyncIterator
|
|
from typing import Any
|
|
|
|
from botocore.client import BaseClient
|
|
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
ChatCompletionResponseStreamChunk,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
OpenAIEmbeddingsResponse,
|
|
ResponseFormat,
|
|
SamplingParams,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.apis.inference.inference import OpenAICompletion
|
|
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
|
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
OpenAICompatCompletionChoice,
|
|
OpenAICompatCompletionResponse,
|
|
get_sampling_strategy_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
)
|
|
|
|
from .models import MODEL_ENTRIES
|
|
|
|
REGION_PREFIX_MAP = {
|
|
"us": "us.",
|
|
"eu": "eu.",
|
|
"ap": "ap.",
|
|
}
|
|
|
|
|
|
def _get_region_prefix(region: str | None) -> str:
|
|
# AWS requires region prefixes for inference profiles
|
|
if region is None:
|
|
return "us." # default to US when we don't know
|
|
|
|
# Handle case insensitive region matching
|
|
region_lower = region.lower()
|
|
for prefix in REGION_PREFIX_MAP:
|
|
if region_lower.startswith(f"{prefix}-"):
|
|
return REGION_PREFIX_MAP[prefix]
|
|
|
|
# Fallback to US for anything we don't recognize
|
|
return "us."
|
|
|
|
|
|
def _to_inference_profile_id(model_id: str, region: str = None) -> str:
|
|
# Return ARNs unchanged
|
|
if model_id.startswith("arn:"):
|
|
return model_id
|
|
|
|
# Return inference profile IDs that already have regional prefixes
|
|
if any(model_id.startswith(p) for p in REGION_PREFIX_MAP.values()):
|
|
return model_id
|
|
|
|
# Default to US East when no region is provided
|
|
if region is None:
|
|
region = "us-east-1"
|
|
|
|
return _get_region_prefix(region) + model_id
|
|
|
|
|
|
class BedrockInferenceAdapter(
|
|
ModelRegistryHelper,
|
|
Inference,
|
|
OpenAIChatCompletionToLlamaStackMixin,
|
|
):
|
|
def __init__(self, config: BedrockConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
|
|
self._config = config
|
|
self._client = None
|
|
|
|
@property
|
|
def client(self) -> BaseClient:
|
|
if self._client is None:
|
|
self._client = create_bedrock_client(self._config)
|
|
return self._client
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
if self._client is not None:
|
|
self._client.close()
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: list[Message],
|
|
sampling_params: SamplingParams | None = None,
|
|
response_format: ResponseFormat | None = None,
|
|
tools: list[ToolDefinition] | None = None,
|
|
tool_choice: ToolChoice | None = ToolChoice.auto,
|
|
tool_prompt_format: ToolPromptFormat | None = None,
|
|
stream: bool | None = False,
|
|
logprobs: LogProbConfig | None = None,
|
|
tool_config: ToolConfig | None = None,
|
|
) -> ChatCompletionResponse | AsyncIterator[ChatCompletionResponseStreamChunk]:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model(**params)
|
|
chunk = next(res["body"])
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
|
|
response = OpenAICompatCompletionResponse(choices=[choice])
|
|
return process_chat_completion_response(response, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params_for_chat_completion(request)
|
|
res = self.client.invoke_model_with_response_stream(**params)
|
|
event_stream = res["body"]
|
|
|
|
async def _generate_and_convert_to_openai_compat():
|
|
for chunk in event_stream:
|
|
chunk = chunk["chunk"]["bytes"]
|
|
result = json.loads(chunk.decode("utf-8"))
|
|
choice = OpenAICompatCompletionChoice(
|
|
finish_reason=result["stop_reason"],
|
|
text=result["generation"],
|
|
)
|
|
yield OpenAICompatCompletionResponse(choices=[choice])
|
|
|
|
stream = _generate_and_convert_to_openai_compat()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params_for_chat_completion(self, request: ChatCompletionRequest) -> dict:
|
|
bedrock_model = request.model
|
|
|
|
sampling_params = request.sampling_params
|
|
options = get_sampling_strategy_options(sampling_params)
|
|
|
|
if sampling_params.max_tokens:
|
|
options["max_gen_len"] = sampling_params.max_tokens
|
|
if sampling_params.repetition_penalty > 0:
|
|
options["repetition_penalty"] = sampling_params.repetition_penalty
|
|
|
|
prompt = await chat_completion_request_to_prompt(request, self.get_llama_model(request.model))
|
|
|
|
# Convert foundation model ID to inference profile ID
|
|
region_name = self.client.meta.region_name
|
|
inference_profile_id = _to_inference_profile_id(bedrock_model, region_name)
|
|
|
|
return {
|
|
"modelId": inference_profile_id,
|
|
"body": json.dumps(
|
|
{
|
|
"prompt": prompt,
|
|
**options,
|
|
}
|
|
),
|
|
}
|
|
|
|
async def openai_embeddings(
|
|
self,
|
|
model: str,
|
|
input: str | list[str],
|
|
encoding_format: str | None = "float",
|
|
dimensions: int | None = None,
|
|
user: str | None = None,
|
|
) -> OpenAIEmbeddingsResponse:
|
|
raise NotImplementedError()
|
|
|
|
async def openai_completion(
|
|
self,
|
|
# Standard OpenAI completion parameters
|
|
model: str,
|
|
prompt: str | list[str] | list[int] | list[list[int]],
|
|
best_of: int | None = None,
|
|
echo: bool | None = None,
|
|
frequency_penalty: float | None = None,
|
|
logit_bias: dict[str, float] | None = None,
|
|
logprobs: bool | None = None,
|
|
max_tokens: int | None = None,
|
|
n: int | None = None,
|
|
presence_penalty: float | None = None,
|
|
seed: int | None = None,
|
|
stop: str | list[str] | None = None,
|
|
stream: bool | None = None,
|
|
stream_options: dict[str, Any] | None = None,
|
|
temperature: float | None = None,
|
|
top_p: float | None = None,
|
|
user: str | None = None,
|
|
# vLLM-specific parameters
|
|
guided_choice: list[str] | None = None,
|
|
prompt_logprobs: int | None = None,
|
|
# for fill-in-the-middle type completion
|
|
suffix: str | None = None,
|
|
) -> OpenAICompletion:
|
|
raise NotImplementedError("OpenAI completion not supported by the Bedrock provider")
|