llama-stack-mirror/tests/integration
Matthew Farrellee 873a400544 chore: OpenAIMixin implements ModelsProtocolPrivate (#3662)
# What does this PR do?

add ModelsProtocolPrivate methods to OpenAIMixin

this will allow providers using OpenAIMixin to use a common interface


## Test Plan

ci w/ new tests
2025-10-02 21:50:13 -07:00
..
agents chore: fix agents tests for non-ollama providers, provide max_tokens (#3657) 2025-10-02 21:50:12 -07:00
batches feat(batches, completions): add /v1/completions support to /v1/batches (#3309) 2025-09-05 11:59:57 -07:00
datasets fix: test_datasets HF scenario in CI (#2090) 2025-05-06 14:09:15 +02:00
eval fix(eval): use client.alpha for eval tests 2025-09-30 13:02:33 -07:00
files feat(files, s3, expiration): add expires_after support to S3 files provider (#3283) 2025-08-29 16:17:24 -07:00
fixtures feat(openai_movement): Change URL structures to kill /openai/v1 (part 1) (#3587) 2025-09-29 16:14:35 -07:00
inference feat(tools)!: substantial clean up of "Tool" related datatypes (#3627) 2025-10-02 21:50:13 -07:00
inspect chore: default to pytest asyncio-mode=auto (#2730) 2025-07-11 13:00:24 -07:00
post_training chore(pre-commit): add pre-commit hook to enforce llama_stack logger usage (#3061) 2025-08-20 07:15:35 -04:00
providers chore: skip nvidia datastore tests when nvidia datastore is not enabled (#3590) 2025-09-29 05:15:58 -04:00
recordings chore: OpenAIMixin implements ModelsProtocolPrivate (#3662) 2025-10-02 21:50:13 -07:00
responses fix: responses <> chat completion input conversion (#3645) 2025-10-02 21:50:13 -07:00
safety feat: Code scanner Provider impl for moderations api (#3100) 2025-08-18 14:15:40 -07:00
scoring feat: create HTTP DELETE API endpoints to unregister ScoringFn and Benchmark resources in Llama Stack (#3371) 2025-09-15 12:43:38 -07:00
telemetry chore(apis): unpublish deprecated /v1/inference apis (#3297) 2025-09-27 11:20:06 -07:00
test_cases chore(apis): unpublish deprecated /v1/inference apis (#3297) 2025-09-27 11:20:06 -07:00
tool_runtime feat(tools)!: substantial clean up of "Tool" related datatypes (#3627) 2025-10-02 21:50:13 -07:00
tools fix: toolgroups unregister (#1704) 2025-03-19 13:43:51 -07:00
vector_io feat!: Migrate Vector DB IDs to Vector Store IDs (breaking change) (#3253) 2025-09-05 15:40:34 +02:00
__init__.py fix: remove ruff N999 (#1388) 2025-03-07 11:14:04 -08:00
conftest.py feat(tests): migrate to global "setups" system for test configuration (#3390) 2025-09-09 15:50:56 -07:00
README.md chore: unpublish /inference/chat-completion (#3609) 2025-09-30 11:00:42 -07:00
suites.py chore: recordings for fireworks (inference + openai) (#3573) 2025-09-27 11:22:30 -07:00

Integration Testing Guide

Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.

Quick Start

# Run all integration tests with existing recordings
uv run --group test \
  pytest -sv tests/integration/ --stack-config=starter

Configuration Options

You can see all options with:

cd tests/integration

# this will show a long list of options, look for "Custom options:"
pytest --help

Here are the most important options:

  • --stack-config: specify the stack config to use. You have four ways to point to a stack:
    • server:<config> - automatically start a server with the given config (e.g., server:starter). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
    • server:<config>:<port> - same as above but with a custom port (e.g., server:starter:8322)
    • a URL which points to a Llama Stack distribution server
    • a distribution name (e.g., starter) or a path to a run.yaml file
    • a comma-separated list of api=provider pairs, e.g. inference=ollama,safety=llama-guard,agents=meta-reference. This is most useful for testing a single API surface.
  • --env: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.

Model parameters can be influenced by the following options:

  • --text-model: comma-separated list of text models.
  • --vision-model: comma-separated list of vision models.
  • --embedding-model: comma-separated list of embedding models.
  • --safety-shield: comma-separated list of safety shields.
  • --judge-model: comma-separated list of judge models.
  • --embedding-dimension: output dimensionality of the embedding model to use for testing. Default: 384

Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped if no model is specified.

Suites and Setups

  • --suite: single named suite that narrows which tests are collected.
  • Available suites:
    • base: collects most tests (excludes responses and post_training)
    • responses: collects tests under tests/integration/responses (needs strong tool-calling models)
    • vision: collects only tests/integration/inference/test_vision_inference.py
  • --setup: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
    • Available setups:
      • ollama: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
      • vllm: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
      • gpt: OpenAI GPT models for high-quality responses (uses gpt-4o)
      • claude: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)

Examples

# Fast responses run with a strong tool-calling model
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt

# Fast single-file vision run with Ollama defaults
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama

# Base suite with VLLM for performance
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm

# Override a default from setup
pytest -s -v tests/integration --stack-config=server:starter \
  --suite=responses --setup=gpt --embedding-model=text-embedding-3-small

Examples

Testing against a Server

Run all text inference tests by auto-starting a server with the starter config:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/test_text_inference.py \
   --stack-config=server:starter \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Run tests with auto-server startup on a custom port:

OLLAMA_URL=http://localhost:11434 \
  pytest -s -v tests/integration/inference/ \
   --stack-config=server:starter:8322 \
   --text-model=ollama/llama3.2:3b-instruct-fp16 \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Testing with Library Client

The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.

You can do this by simply using --stack-config=starter instead of --stack-config=server:starter.

Using ad-hoc distributions

Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the --stack-config option, e.g. inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference.

pytest -s -v tests/integration/inference/ \
   --stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
   --text-model=$TEXT_MODELS \
   --vision-model=$VISION_MODELS \
   --embedding-model=$EMBEDDING_MODELS

Another example: Running Vector IO tests for embedding models:

pytest -s -v tests/integration/vector_io/ \
   --stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
   --embedding-model=sentence-transformers/all-MiniLM-L6-v2

Recording Modes

The testing system supports three modes controlled by environment variables:

REPLAY Mode (Default)

Uses cached responses instead of making API calls:

pytest tests/integration/

RECORD Mode

Captures API interactions for later replay:

pytest tests/integration/inference/test_new_feature.py --inference-mode=record

LIVE Mode

Tests make real API calls (but not recorded):

pytest tests/integration/ --inference-mode=live

By default, the recording directory is tests/integration/recordings. You can override this by setting the LLAMA_STACK_TEST_RECORDING_DIR environment variable.

Managing Recordings

Viewing Recordings

# See what's recorded
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"

# Inspect specific response
cat recordings/responses/abc123.json | jq '.'

Re-recording Tests

Use the automated workflow script for easier re-recording:

./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"

See the main testing guide for full details.

Local Re-recording

# Re-record specific tests
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record

Note that when re-recording tests, you must use a Stack pointing to a server (i.e., server:starter). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.

Writing Tests

Basic Test Pattern

def test_basic_chat_completion(llama_stack_client, text_model_id):
    response = llama_stack_client.chat.completions.create(
        model=text_model_id,
        messages=[{"role": "user", "content": "Hello"}],
    )

    # Test structure, not AI output quality
    assert response.choices[0].message is not None
    assert isinstance(response.choices[0].message.content, str)
    assert len(response.choices[0].message.content) > 0

Provider-Specific Tests

def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
    if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
        pytest.skip(f"Model {embedding_model_id} doesn't support task types")

    query_response = llama_stack_client.inference.embeddings(
        model_id=embedding_model_id,
        contents=["What is machine learning?"],
        task_type="query",
    )

    assert query_response.embeddings is not None