llama-stack-mirror/tests/unit/providers/agent/test_meta_reference_agent.py
Ashwin Bharambe ef0736527d
feat(tools)!: substantial clean up of "Tool" related datatypes (#3627)
This is a sweeping change to clean up some gunk around our "Tool"
definitions.

First, we had two types `Tool` and `ToolDef`. The first of these was a
"Resource" type for the registry but we had stopped registering tools
inside the Registry long back (and only registered ToolGroups.) The
latter was for specifying tools for the Agents API. This PR removes the
former and adds an optional `toolgroup_id` field to the latter.

Secondly, as pointed out by @bbrowning in
https://github.com/llamastack/llama-stack/pull/3003#issuecomment-3245270132,
we were doing a lossy conversion from a full JSON schema from the MCP
tool specification into our ToolDefinition to send it to the model.
There is no necessity to do this -- we ourselves aren't doing any
execution at all but merely passing it to the chat completions API which
supports this. By doing this (and by doing it poorly), we encountered
limitations like not supporting array items, or not resolving $refs,
etc.

To fix this, we replaced the `parameters` field by `{ input_schema,
output_schema }` which can be full blown JSON schemas.

Finally, there were some types in our llama-related chat format
conversion which needed some cleanup. We are taking this opportunity to
clean those up.

This PR is a substantial breaking change to the API. However, given our
window for introducing breaking changes, this suits us just fine. I will
be landing a concurrent `llama-stack-client` change as well since API
shapes are changing.
2025-10-02 15:12:03 -07:00

303 lines
10 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from datetime import datetime
from unittest.mock import AsyncMock
import pytest
from llama_stack.apis.agents import (
Agent,
AgentConfig,
AgentCreateResponse,
)
from llama_stack.apis.common.responses import PaginatedResponse
from llama_stack.apis.inference import Inference
from llama_stack.apis.safety import Safety
from llama_stack.apis.tools import ListToolDefsResponse, ToolDef, ToolGroups, ToolRuntime
from llama_stack.apis.vector_io import VectorIO
from llama_stack.providers.inline.agents.meta_reference.agent_instance import ChatAgent
from llama_stack.providers.inline.agents.meta_reference.agents import MetaReferenceAgentsImpl
from llama_stack.providers.inline.agents.meta_reference.config import MetaReferenceAgentsImplConfig
from llama_stack.providers.inline.agents.meta_reference.persistence import AgentInfo
@pytest.fixture
def mock_apis():
return {
"inference_api": AsyncMock(spec=Inference),
"vector_io_api": AsyncMock(spec=VectorIO),
"safety_api": AsyncMock(spec=Safety),
"tool_runtime_api": AsyncMock(spec=ToolRuntime),
"tool_groups_api": AsyncMock(spec=ToolGroups),
}
@pytest.fixture
def config(tmp_path):
return MetaReferenceAgentsImplConfig(
persistence_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
responses_store={
"type": "sqlite",
"db_path": str(tmp_path / "test.db"),
},
)
@pytest.fixture
async def agents_impl(config, mock_apis):
impl = MetaReferenceAgentsImpl(
config,
mock_apis["inference_api"],
mock_apis["vector_io_api"],
mock_apis["safety_api"],
mock_apis["tool_runtime_api"],
mock_apis["tool_groups_api"],
{},
)
await impl.initialize()
yield impl
await impl.shutdown()
@pytest.fixture
def sample_agent_config():
return AgentConfig(
sampling_params={
"strategy": {"type": "greedy"},
"max_tokens": 0,
"repetition_penalty": 1.0,
},
input_shields=["string"],
output_shields=["string"],
toolgroups=["mcp::my_mcp_server"],
client_tools=[
{
"name": "client_tool",
"description": "Client Tool",
"parameters": [
{
"name": "string",
"parameter_type": "string",
"description": "string",
"required": True,
"default": None,
}
],
"metadata": {
"property1": None,
"property2": None,
},
}
],
tool_choice="auto",
tool_prompt_format="json",
tool_config={
"tool_choice": "auto",
"tool_prompt_format": "json",
"system_message_behavior": "append",
},
max_infer_iters=10,
model="string",
instructions="string",
enable_session_persistence=False,
response_format={
"type": "json_schema",
"json_schema": {
"property1": None,
"property2": None,
},
},
)
async def test_create_agent(agents_impl, sample_agent_config):
response = await agents_impl.create_agent(sample_agent_config)
assert isinstance(response, AgentCreateResponse)
assert response.agent_id is not None
stored_agent = await agents_impl.persistence_store.get(f"agent:{response.agent_id}")
assert stored_agent is not None
agent_info = AgentInfo.model_validate_json(stored_agent)
assert agent_info.model == sample_agent_config.model
assert agent_info.created_at is not None
assert isinstance(agent_info.created_at, datetime)
async def test_get_agent(agents_impl, sample_agent_config):
create_response = await agents_impl.create_agent(sample_agent_config)
agent_id = create_response.agent_id
agent = await agents_impl.get_agent(agent_id)
assert isinstance(agent, Agent)
assert agent.agent_id == agent_id
assert agent.agent_config.model == sample_agent_config.model
assert agent.created_at is not None
assert isinstance(agent.created_at, datetime)
async def test_list_agents(agents_impl, sample_agent_config):
agent1_response = await agents_impl.create_agent(sample_agent_config)
agent2_response = await agents_impl.create_agent(sample_agent_config)
response = await agents_impl.list_agents()
assert isinstance(response, PaginatedResponse)
assert len(response.data) == 2
agent_ids = {agent["agent_id"] for agent in response.data}
assert agent1_response.agent_id in agent_ids
assert agent2_response.agent_id in agent_ids
@pytest.mark.parametrize("enable_session_persistence", [True, False])
async def test_create_agent_session_persistence(agents_impl, sample_agent_config, enable_session_persistence):
# Create an agent with specified persistence setting
config = sample_agent_config.model_copy()
config.enable_session_persistence = enable_session_persistence
response = await agents_impl.create_agent(config)
agent_id = response.agent_id
# Create a session
session_response = await agents_impl.create_agent_session(agent_id, "test_session")
assert session_response.session_id is not None
# Verify the session was stored
session = await agents_impl.get_agents_session(agent_id, session_response.session_id)
assert session.session_name == "test_session"
assert session.session_id == session_response.session_id
assert session.started_at is not None
assert session.turns == []
# Delete the session
await agents_impl.delete_agents_session(agent_id, session_response.session_id)
# Verify the session was deleted
with pytest.raises(ValueError):
await agents_impl.get_agents_session(agent_id, session_response.session_id)
@pytest.mark.parametrize("enable_session_persistence", [True, False])
async def test_list_agent_sessions_persistence(agents_impl, sample_agent_config, enable_session_persistence):
# Create an agent with specified persistence setting
config = sample_agent_config.model_copy()
config.enable_session_persistence = enable_session_persistence
response = await agents_impl.create_agent(config)
agent_id = response.agent_id
# Create multiple sessions
session1 = await agents_impl.create_agent_session(agent_id, "session1")
session2 = await agents_impl.create_agent_session(agent_id, "session2")
# List sessions
sessions = await agents_impl.list_agent_sessions(agent_id)
assert len(sessions.data) == 2
session_ids = {s["session_id"] for s in sessions.data}
assert session1.session_id in session_ids
assert session2.session_id in session_ids
# Delete one session
await agents_impl.delete_agents_session(agent_id, session1.session_id)
# Verify the session was deleted
with pytest.raises(ValueError):
await agents_impl.get_agents_session(agent_id, session1.session_id)
# List sessions again
sessions = await agents_impl.list_agent_sessions(agent_id)
assert len(sessions.data) == 1
assert session2.session_id in {s["session_id"] for s in sessions.data}
async def test_delete_agent(agents_impl, sample_agent_config):
# Create an agent
response = await agents_impl.create_agent(sample_agent_config)
agent_id = response.agent_id
# Delete the agent
await agents_impl.delete_agent(agent_id)
# Verify the agent was deleted
with pytest.raises(ValueError):
await agents_impl.get_agent(agent_id)
async def test__initialize_tools(agents_impl, sample_agent_config):
# Mock tool_groups_api.list_tools()
agents_impl.tool_groups_api.list_tools.return_value = ListToolDefsResponse(
data=[
ToolDef(
name="story_maker",
toolgroup_id="mcp::my_mcp_server",
description="Make a story",
input_schema={
"type": "object",
"properties": {
"story_title": {"type": "string", "description": "Title of the story", "title": "Story Title"},
"input_words": {
"type": "array",
"description": "Input words",
"items": {"type": "string"},
"title": "Input Words",
"default": [],
},
},
"required": ["story_title"],
},
)
]
)
create_response = await agents_impl.create_agent(sample_agent_config)
agent_id = create_response.agent_id
# Get an instance of ChatAgent
chat_agent = await agents_impl._get_agent_impl(agent_id)
assert chat_agent is not None
assert isinstance(chat_agent, ChatAgent)
# Initialize tool definitions
await chat_agent._initialize_tools()
assert len(chat_agent.tool_defs) == 2
# Verify the first tool, which is a client tool
first_tool = chat_agent.tool_defs[0]
assert first_tool.tool_name == "client_tool"
assert first_tool.description == "Client Tool"
# Verify the second tool, which is an MCP tool that has an array-type property
second_tool = chat_agent.tool_defs[1]
assert second_tool.tool_name == "story_maker"
assert second_tool.description == "Make a story"
# Verify the input schema
input_schema = second_tool.input_schema
assert input_schema is not None
assert input_schema["type"] == "object"
properties = input_schema["properties"]
assert len(properties) == 2
# Verify a string property
story_title = properties["story_title"]
assert story_title["type"] == "string"
assert story_title["description"] == "Title of the story"
assert story_title["title"] == "Story Title"
# Verify an array property
input_words = properties["input_words"]
assert input_words["type"] == "array"
assert input_words["description"] == "Input words"
assert input_words["items"]["type"] == "string"
assert input_words["title"] == "Input Words"
assert input_words["default"] == []
# Verify required fields
assert input_schema["required"] == ["story_title"]