llama-stack-mirror/llama_stack/providers/remote/inference/sambanova/sambanova.py

516 lines
17 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import AsyncGenerator, Dict, List, Optional, Union
from llama_models.datatypes import CoreModelId
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message
from llama_models.llama3.api.tokenizer import Tokenizer
from openai import AsyncOpenAI
from llama_stack.apis.inference import (
AsyncIterator,
ChatCompletionRequest,
CompletionRequest,
CompletionResponse,
CompletionResponseStreamChunk,
EmbeddingsResponse,
Inference,
InterleavedTextMedia,
LogProbConfig,
ResponseFormat,
SamplingParams,
ToolChoice,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.distribution.request_headers import NeedsRequestProviderData
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_model_alias,
)
from llama_stack.providers.utils.inference.openai_compat import (
ChatCompletionResponseStreamChunk,
OpenAICompatCompletionChoice,
OpenAICompatCompletionResponse,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from .config import SambanovaImplConfig
class SambanovaErrorCode(str, Enum):
INVALID_AUTH = "invalid_authentication"
REQUEST_TIMEOUT = "request_timeout"
INSUFFICIENT_QUOTA = "insufficient_quota"
CONTEXT_LENGTH_EXCEEDED = "context_length_exceeded"
INVALID_TYPE = "invalid_type"
MODEL_NOT_FOUND = "model_not_found"
VALUE_ABOVE_MAX = "decimal_above_max_value"
VALUE_BELOW_MIN = "decimal_below_min_value"
INTEGER_ABOVE_MAX = "integer_above_max_value"
MODEL_ALIASES = [
build_model_alias(
"Meta-Llama-3.2-1B-Instruct",
CoreModelId.llama3_2_1b_instruct.value,
),
build_model_alias(
"Meta-Llama-3.2-3B-Instruct",
CoreModelId.llama3_2_3b_instruct.value,
),
build_model_alias(
"Llama-3.2-11B-Vision-Instruct",
CoreModelId.llama3_2_11b_vision_instruct.value,
),
build_model_alias(
"Llama-3.2-90B-Vision-Instruct",
CoreModelId.llama3_2_90b_vision_instruct.value,
),
build_model_alias(
"Meta-Llama-3.1-8B-Instruct",
CoreModelId.llama3_1_8b_instruct.value,
),
build_model_alias(
"Meta-Llama-3.1-70B-Instruct",
CoreModelId.llama3_1_70b_instruct.value,
),
build_model_alias(
"Meta-Llama-3.1-405B-Instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
]
FUNCTION_CALLING_MODELS = {
"Meta-Llama-3.1-8B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-405B-Instruct",
}
UNSUPPORTED_PARAMS = {
"logprobs",
"top_logprobs",
"n",
"presence_penalty",
"frequency_penalty",
"logit_bias",
"parallel_tool_calls",
"seed",
"response_format",
}
class SambanovaInferenceAdapter(
ModelRegistryHelper, Inference, NeedsRequestProviderData
):
"""SambaNova inference adapter using OpenAI client compatibility layer.
This adapter provides access to SambaNova's AI models through their OpenAI-compatible API.
It handles authentication, request formatting, and response processing while managing
unsupported features gracefully.
Note: Some OpenAI features are not supported:
- logprobs, top_logprobs, n
- presence_penalty, frequency_penalty
- logit_bias
- tools and tool_choice (function calling)
- parallel_tool_calls, seed
- stream_options
- response_format (JSON mode)
"""
def __init__(self, config: SambanovaImplConfig) -> None:
"""Initialize the SambaNova inference adapter.
Args:
config: Configuration for the SambaNova implementation
"""
ModelRegistryHelper.__init__(self, MODEL_ALIASES)
self.config = config
self.formatter = ChatFormat(Tokenizer.get_instance())
self._client: Optional[AsyncOpenAI] = None
@property
def client(self) -> AsyncOpenAI:
"""Get or create the OpenAI client instance.
Returns:
AsyncOpenAI: The configured client instance
"""
if self._client is None:
self._client = AsyncOpenAI(
base_url="https://api.sambanova.ai/v1",
api_key=self._get_api_key(),
timeout=60.0,
)
return self._client
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
def _get_api_key(self) -> str:
"""Get the API key from config or request headers.
Returns:
str: The API key to use
Raises:
ValueError: If no API key is available
"""
if self.config.api_key is not None:
return self.config.api_key
provider_data = self.get_request_provider_data()
if provider_data is None or not provider_data.sambanova_api_key:
raise ValueError(
'Pass SambaNova API Key in the header X-LlamaStack-ProviderData as { "sambanova_api_key": <your api key>}'
)
return provider_data.sambanova_api_key
def _filter_unsupported_params(self, params: Dict) -> Dict:
"""Remove parameters not supported by SambaNova API.
Args:
params: Original parameters dictionary
Returns:
Dict: Filtered parameters dictionary
"""
return {k: v for k, v in params.items() if k not in UNSUPPORTED_PARAMS}
async def _get_params(
self, request: Union[ChatCompletionRequest, CompletionRequest]
) -> dict:
"""Prepare parameters for the API request.
Args:
request: The completion request
Returns:
dict: Prepared parameters for the API call
"""
# Get and process sampling options
sampling_options = get_sampling_options(request.sampling_params)
filtered_options = self._filter_unsupported_params(sampling_options)
if "temperature" in filtered_options:
filtered_options["temperature"] = min(
max(filtered_options["temperature"], 0), 1
)
input_dict = {}
if isinstance(request, ChatCompletionRequest):
input_dict["messages"] = [
{"role": message.role, "content": message.content}
for message in request.messages
]
if request.tools and self._supports_function_calling(request.model):
input_dict["tools"] = [
self._convert_tool_to_function(tool)
for tool in request.tools
]
if request.tool_choice == ToolChoice.auto:
input_dict["tool_choice"] = "auto"
elif request.tool_choice == ToolChoice.required:
input_dict["tool_choice"] = "required"
elif isinstance(request.tool_choice, str):
input_dict["tool_choice"] = {
"type": "function",
"function": {"name": request.tool_choice},
}
else:
input_dict["prompt"] = request.content
return {
"model": request.model,
**input_dict,
**filtered_options,
"stream": request.stream,
}
async def _handle_sambanova_error(self, e: Exception) -> None:
"""Handle SambaNova specific API errors with detailed messages.
Args:
e: The exception to handle
Raises:
ValueError: For client errors
RuntimeError: For server errors
"""
error_msg = str(e)
error_data = {}
try:
if hasattr(e, "response"):
error_data = e.response.json().get("error", {})
except Exception:
pass
error_code = error_data.get("code", "")
error_message = error_data.get("message", error_msg)
error_param = error_data.get("param", "")
if "401" in error_msg or error_code == SambanovaErrorCode.INVALID_AUTH:
raise ValueError("Invalid API key or unauthorized access") from e
elif (
"408" in error_msg
or error_code == SambanovaErrorCode.REQUEST_TIMEOUT
):
raise ValueError(
"Request timed out. Consider upgrading to a higher tier offering"
) from e
elif (
"429" in error_msg
or error_code == SambanovaErrorCode.INSUFFICIENT_QUOTA
):
raise ValueError(
"Rate limit exceeded. Consider upgrading to a higher tier offering"
) from e
elif "400" in error_msg:
if error_code == SambanovaErrorCode.CONTEXT_LENGTH_EXCEEDED:
raise ValueError(
"Total number of input and output tokens exceeds model's context length"
) from e
elif error_code == SambanovaErrorCode.INVALID_TYPE:
raise ValueError(
f"Invalid parameter type for {error_param}: {error_message}"
) from e
elif error_code in (
SambanovaErrorCode.VALUE_ABOVE_MAX,
SambanovaErrorCode.VALUE_BELOW_MIN,
SambanovaErrorCode.INTEGER_ABOVE_MAX,
):
raise ValueError(
f"Invalid value for {error_param}: {error_message}"
) from e
elif error_code == SambanovaErrorCode.MODEL_NOT_FOUND:
raise ValueError(f"Model not found: {error_message}") from e
else:
raise ValueError(f"Bad request: {error_message}") from e
raise RuntimeError(f"SambaNova API error: {error_message}") from e
def _supports_function_calling(self, model: str) -> bool:
"""Check if the model supports function calling.
Args:
model: Model name to check
Returns:
bool: True if model supports function calling
"""
return any(
model.startswith(supported) for supported in FUNCTION_CALLING_MODELS
)
def _convert_tool_to_function(self, tool: ToolDefinition) -> dict:
"""Convert a ToolDefinition to SambaNova function format.
Args:
tool: Tool definition to convert
Returns:
dict: Function definition in SambaNova format
"""
return {
"type": "function",
"function": {
"name": tool.tool_name,
"description": tool.description,
"parameters": {
"type": "object",
"properties": {
name: {
"type": param.param_type,
"description": param.description,
}
for name, param in tool.parameters.items()
},
"required": list(tool.parameters.keys()),
},
},
}
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncGenerator:
try:
params = await self._get_params(request)
response = await self.client.chat.completions.create(**params)
if (
self._supports_function_calling(request.model)
and response.choices[0].message.tool_calls
):
tool_call = response.choices[0].message.tool_calls[0]
choice = OpenAICompatCompletionChoice(
finish_reason=response.choices[0].finish_reason,
text="",
tool_calls=[
{
"tool_name": tool_call.function.name,
"arguments": tool_call.function.arguments or "",
}
],
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=response.choices[0].finish_reason,
text=response.choices[0].message.content or "",
tool_calls=[],
)
compat_response = OpenAICompatCompletionResponse(choices=[choice])
return process_chat_completion_response(
compat_response, self.formatter
)
except Exception as e:
await self._handle_sambanova_error(e)
async def _stream_chat_completion(
self, request: ChatCompletionRequest
) -> AsyncIterator[ChatCompletionResponseStreamChunk]:
try:
params = await self._get_params(request)
stream = await self.client.chat.completions.create(**params)
async def _to_async_generator():
async for chunk in stream:
if (
self._supports_function_calling(request.model)
and chunk.choices[0].delta.tool_calls
):
tool_call = chunk.choices[0].delta.tool_calls[0]
choice = OpenAICompatCompletionChoice(
finish_reason=chunk.choices[0].finish_reason,
text="",
tool_calls=[
{
"tool_name": tool_call.function.name,
"arguments": tool_call.function.arguments
or "",
}
]
if tool_call.function
else None,
)
else:
choice = OpenAICompatCompletionChoice(
finish_reason=chunk.choices[0].finish_reason,
text=chunk.choices[0].delta.content or "",
tool_calls=[],
)
yield OpenAICompatCompletionResponse(choices=[choice])
async for chunk in process_chat_completion_stream_response(
_to_async_generator(), self.formatter
):
yield chunk
except Exception as e:
await self._handle_sambanova_error(e)
def completion(
self,
model_id: str,
content: InterleavedTextMedia,
sampling_params: Optional[SamplingParams] = SamplingParams(),
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> Union[
CompletionResponse, AsyncIterator[CompletionResponseStreamChunk]
]:
raise NotImplementedError("SambaNova does not support text completion")
async def chat_completion(
self,
model_id: str,
messages: List[Message],
sampling_params: Optional[SamplingParams] = SamplingParams(),
tools: Optional[List[ToolDefinition]] = None,
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
response_format: Optional[ResponseFormat] = None,
stream: Optional[bool] = False,
logprobs: Optional[LogProbConfig] = None,
) -> AsyncGenerator:
"""Handle chat completion requests.
Args:
model_id: The model identifier
messages: List of chat messages
sampling_params: Parameters for text generation
tools: Tool definitions (supported only for specific models)
tool_choice: Tool choice option
tool_prompt_format: Tool prompt format
response_format: Response format (not supported)
stream: Whether to stream the response
logprobs: Log probability config (not supported)
Returns:
AsyncGenerator: The completion response
Raises:
ValueError: If function calling is requested for unsupported model
"""
model = await self.model_store.get_model(model_id)
# Raise error for tool usage with unsupported models
if tools and not self._supports_function_calling(
model.provider_resource_id
):
raise ValueError(
f"Function calling is not supported for model {model.provider_resource_id}. "
f"Only the following models support function calling: "
f"{', '.join(FUNCTION_CALLING_MODELS)}"
)
request = ChatCompletionRequest(
model=model.provider_resource_id,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
tool_choice=tool_choice,
tool_prompt_format=tool_prompt_format,
stream=stream,
logprobs=logprobs,
)
if stream:
return self._stream_chat_completion(request)
else:
return await self._nonstream_chat_completion(request)
async def embeddings(
self,
model_id: str,
contents: List[InterleavedTextMedia],
) -> EmbeddingsResponse:
"""Embeddings are not supported.
Raises:
NotImplementedError: Always raised as this feature is not supported
"""
raise NotImplementedError("Embeddings not supported for SambaNova")