mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
315 lines
11 KiB
Python
315 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# top-level folder for each specific model found within the models/ directory at
|
|
# the top-level of this source tree.
|
|
|
|
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# This software may be used and distributed in accordance with the terms of the Llama 3 Community License Agreement.
|
|
|
|
import math
|
|
from typing import Optional, Tuple
|
|
|
|
import fairscale.nn.model_parallel.initialize as fs_init
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from fairscale.nn.model_parallel.layers import (
|
|
ColumnParallelLinear,
|
|
RowParallelLinear,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from torch import nn
|
|
|
|
from ..api import ModelArgs
|
|
|
|
# **NOTE**: This code is not runnable without installing `torch` and `fairscale`
|
|
# dependencies. These dependencies are not part of the default dependencies
|
|
# (requirements.txt) of the `llama-models` package.
|
|
|
|
|
|
class RMSNorm(torch.nn.Module):
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|
super().__init__()
|
|
self.eps = eps
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|
|
|
def _norm(self, x):
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|
|
|
def forward(self, x):
|
|
output = self._norm(x.float()).type_as(x)
|
|
return output * self.weight
|
|
|
|
|
|
def apply_scaling(freqs: torch.Tensor) -> torch.Tensor:
|
|
# Values obtained from grid search
|
|
scale_factor = 8
|
|
low_freq_factor = 1
|
|
high_freq_factor = 4
|
|
old_context_len = 8192 # original llama3 length
|
|
|
|
low_freq_wavelen = old_context_len / low_freq_factor
|
|
high_freq_wavelen = old_context_len / high_freq_factor
|
|
|
|
wavelen = 2 * torch.pi / freqs
|
|
new_freqs = torch.where(wavelen > low_freq_wavelen, freqs / scale_factor, freqs)
|
|
smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
|
|
return torch.where(
|
|
(wavelen >= high_freq_wavelen) & (wavelen <= low_freq_wavelen),
|
|
(1 - smooth) * new_freqs / scale_factor + smooth * new_freqs,
|
|
new_freqs,
|
|
)
|
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, use_scaled: bool = False):
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
t = torch.arange(end, device=freqs.device, dtype=torch.float32)
|
|
if use_scaled:
|
|
freqs = apply_scaling(freqs)
|
|
freqs = torch.outer(t, freqs)
|
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
|
return freqs_cis
|
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
|
ndim = x.ndim
|
|
assert 0 <= 1 < ndim
|
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|
return freqs_cis.view(*shape)
|
|
|
|
|
|
def apply_rotary_emb(
|
|
xq: torch.Tensor,
|
|
xk: torch.Tensor,
|
|
freqs_cis: torch.Tensor,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
bs, slen, n_kv_heads, head_dim = x.shape
|
|
if n_rep == 1:
|
|
return x
|
|
return (
|
|
x[:, :, :, None, :]
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|
)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|
model_parallel_size = fs_init.get_model_parallel_world_size()
|
|
self.n_local_heads = args.n_heads // model_parallel_size
|
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
self.head_dim = args.dim // args.n_heads
|
|
|
|
self.wq = ColumnParallelLinear(
|
|
args.dim,
|
|
args.n_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wk = ColumnParallelLinear(
|
|
args.dim,
|
|
self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wv = ColumnParallelLinear(
|
|
args.dim,
|
|
self.n_kv_heads * self.head_dim,
|
|
bias=False,
|
|
gather_output=False,
|
|
init_method=lambda x: x,
|
|
)
|
|
self.wo = RowParallelLinear(
|
|
args.n_heads * self.head_dim,
|
|
args.dim,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
init_method=lambda x: x,
|
|
)
|
|
|
|
self.cache_k = torch.zeros(
|
|
(
|
|
args.max_batch_size,
|
|
args.max_seq_len,
|
|
self.n_local_kv_heads,
|
|
self.head_dim,
|
|
)
|
|
)
|
|
self.cache_v = torch.zeros(
|
|
(
|
|
args.max_batch_size,
|
|
args.max_seq_len,
|
|
self.n_local_kv_heads,
|
|
self.head_dim,
|
|
)
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
start_pos: int,
|
|
freqs_cis: torch.Tensor,
|
|
mask: Optional[torch.Tensor],
|
|
):
|
|
bsz, seqlen, _ = x.shape
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis)
|
|
|
|
self.cache_k = self.cache_k.to(xq)
|
|
self.cache_v = self.cache_v.to(xq)
|
|
|
|
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk
|
|
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv
|
|
|
|
keys = self.cache_k[:bsz, : start_pos + seqlen]
|
|
values = self.cache_v[:bsz, : start_pos + seqlen]
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
keys = repeat_kv(keys, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
|
|
values = repeat_kv(values, self.n_rep) # (bs, cache_len + seqlen, n_local_heads, head_dim)
|
|
|
|
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
|
keys = keys.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
|
|
values = values.transpose(1, 2) # (bs, n_local_heads, cache_len + seqlen, head_dim)
|
|
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)
|
|
if mask is not None:
|
|
scores = scores + mask # (bs, n_local_heads, seqlen, cache_len + seqlen)
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|
output = torch.matmul(scores, values) # (bs, n_local_heads, seqlen, head_dim)
|
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
|
return self.wo(output)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
hidden_dim: int,
|
|
multiple_of: int,
|
|
ffn_dim_multiplier: Optional[float],
|
|
):
|
|
super().__init__()
|
|
hidden_dim = int(2 * hidden_dim / 3)
|
|
# custom dim factor multiplier
|
|
if ffn_dim_multiplier is not None:
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
|
|
|
self.w1 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
self.w2 = RowParallelLinear(hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x)
|
|
self.w3 = ColumnParallelLinear(dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x)
|
|
|
|
def forward(self, x):
|
|
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, layer_id: int, args: ModelArgs):
|
|
super().__init__()
|
|
self.n_heads = args.n_heads
|
|
self.dim = args.dim
|
|
self.head_dim = args.dim // args.n_heads
|
|
self.attention = Attention(args)
|
|
self.feed_forward = FeedForward(
|
|
dim=args.dim,
|
|
hidden_dim=4 * args.dim,
|
|
multiple_of=args.multiple_of,
|
|
ffn_dim_multiplier=args.ffn_dim_multiplier,
|
|
)
|
|
self.layer_id = layer_id
|
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
start_pos: int,
|
|
freqs_cis: torch.Tensor,
|
|
mask: Optional[torch.Tensor],
|
|
):
|
|
h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
|
|
out = h + self.feed_forward(self.ffn_norm(h))
|
|
return out
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
def __init__(self, params: ModelArgs):
|
|
super().__init__()
|
|
self.params = params
|
|
self.vocab_size = params.vocab_size
|
|
self.n_layers = params.n_layers
|
|
|
|
self.tok_embeddings = VocabParallelEmbedding(params.vocab_size, params.dim, init_method=lambda x: x)
|
|
|
|
self.layers = torch.nn.ModuleList()
|
|
for layer_id in range(params.n_layers):
|
|
self.layers.append(TransformerBlock(layer_id, params))
|
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
|
self.output = ColumnParallelLinear(params.dim, params.vocab_size, bias=False, init_method=lambda x: x)
|
|
|
|
self.freqs_cis = precompute_freqs_cis(
|
|
params.dim // params.n_heads,
|
|
params.max_seq_len * 2,
|
|
params.rope_theta,
|
|
params.use_scaled_rope,
|
|
)
|
|
|
|
@torch.inference_mode()
|
|
def forward(self, tokens: torch.Tensor, start_pos: int):
|
|
_bsz, seqlen = tokens.shape
|
|
h = self.tok_embeddings(tokens)
|
|
self.freqs_cis = self.freqs_cis.to(h.device)
|
|
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
|
|
|
|
mask = None
|
|
if seqlen > 1:
|
|
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device)
|
|
|
|
mask = torch.triu(mask, diagonal=1)
|
|
|
|
# https://github.com/pytorch/pytorch/issues/100005
|
|
# torch.triu is buggy when the device is mps: filled values are
|
|
# nan instead of 0.
|
|
if mask.device.type == torch.device("mps").type:
|
|
mask = torch.nan_to_num(mask, nan=0.0)
|
|
|
|
# When performing key-value caching, we compute the attention scores
|
|
# only for the new sequence. Thus, the matrix of scores is of size
|
|
# (seqlen, cache_len + seqlen), and the only masked entries are (i, j) for
|
|
# j > cache_len + i, since row i corresponds to token cache_len + i.
|
|
mask = torch.hstack([torch.zeros((seqlen, start_pos), device=tokens.device), mask]).type_as(h)
|
|
|
|
for layer in self.layers:
|
|
h = layer(h, start_pos, freqs_cis, mask)
|
|
h = self.norm(h)
|
|
output = self.output(h).float()
|
|
return output
|