mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
Groq has never supported raw completions anyhow. So this makes it easier to switch it to LiteLLM. All our test suite passes. I also updated all the openai-compat providers so they work with api keys passed from headers. `provider_data` ## Test Plan ```bash LLAMA_STACK_CONFIG=groq \ pytest -s -v tests/client-sdk/inference/test_text_inference.py \ --inference-model=groq/llama-3.3-70b-versatile --vision-inference-model="" ``` Also tested (openai, anthropic, gemini) providers. No regressions.
32 lines
861 B
Python
32 lines
861 B
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, Optional
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.schema_utils import json_schema_type
|
|
|
|
|
|
class AnthropicProviderDataValidator(BaseModel):
|
|
anthropic_api_key: Optional[str] = Field(
|
|
default=None,
|
|
description="API key for Anthropic models",
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class AnthropicConfig(BaseModel):
|
|
api_key: Optional[str] = Field(
|
|
default=None,
|
|
description="API key for Anthropic models",
|
|
)
|
|
|
|
@classmethod
|
|
def sample_run_config(cls, api_key: str = "${env.ANTHROPIC_API_KEY}", **kwargs) -> Dict[str, Any]:
|
|
return {
|
|
"api_key": api_key,
|
|
}
|