mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
374 lines
11 KiB
Python
374 lines
11 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, AsyncGenerator, Dict, List, Optional
|
|
|
|
from llama_stack.apis.datasetio.datasetio import DatasetIO
|
|
from llama_stack.apis.memory_banks.memory_banks import BankParams
|
|
from llama_stack.distribution.datatypes import RoutingTable
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
from llama_stack.apis.safety import * # noqa: F403
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
from llama_stack.apis.scoring import * # noqa: F403
|
|
from llama_stack.apis.eval import * # noqa: F403
|
|
|
|
|
|
class MemoryRouter(Memory):
|
|
"""Routes to an provider based on the memory bank identifier"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank_id: str,
|
|
params: BankParams,
|
|
provider_id: Optional[str] = None,
|
|
provider_memorybank_id: Optional[str] = None,
|
|
) -> None:
|
|
await self.routing_table.register_memory_bank(
|
|
memory_bank_id,
|
|
params,
|
|
provider_id,
|
|
provider_memorybank_id,
|
|
)
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
return await self.routing_table.get_provider_impl(bank_id).insert_documents(
|
|
bank_id, documents, ttl_seconds
|
|
)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedContent,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
return await self.routing_table.get_provider_impl(bank_id).query_documents(
|
|
bank_id, query, params
|
|
)
|
|
|
|
|
|
class InferenceRouter(Inference):
|
|
"""Routes to an provider based on the model"""
|
|
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_model(
|
|
self,
|
|
model_id: str,
|
|
provider_model_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
model_type: Optional[ModelType] = None,
|
|
) -> None:
|
|
await self.routing_table.register_model(
|
|
model_id, provider_model_id, provider_id, metadata, model_type
|
|
)
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
|
)
|
|
params = dict(
|
|
model_id=model_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
if stream:
|
|
return (chunk async for chunk in await provider.chat_completion(**params))
|
|
else:
|
|
return await provider.chat_completion(**params)
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.embedding:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an embedding model and does not support chat completions"
|
|
)
|
|
provider = self.routing_table.get_provider_impl(model_id)
|
|
params = dict(
|
|
model_id=model_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return (chunk async for chunk in await provider.completion(**params))
|
|
else:
|
|
return await provider.completion(**params)
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
model = await self.routing_table.get_model(model_id)
|
|
if model is None:
|
|
raise ValueError(f"Model '{model_id}' not found")
|
|
if model.model_type == ModelType.llm:
|
|
raise ValueError(
|
|
f"Model '{model_id}' is an LLM model and does not support embeddings"
|
|
)
|
|
return await self.routing_table.get_provider_impl(model_id).embeddings(
|
|
model_id=model_id,
|
|
contents=contents,
|
|
)
|
|
|
|
|
|
class SafetyRouter(Safety):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def register_shield(
|
|
self,
|
|
shield_id: str,
|
|
provider_shield_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> Shield:
|
|
return await self.routing_table.register_shield(
|
|
shield_id, provider_shield_id, provider_id, params
|
|
)
|
|
|
|
async def run_shield(
|
|
self,
|
|
shield_id: str,
|
|
messages: List[Message],
|
|
params: Dict[str, Any] = None,
|
|
) -> RunShieldResponse:
|
|
return await self.routing_table.get_provider_impl(shield_id).run_shield(
|
|
shield_id=shield_id,
|
|
messages=messages,
|
|
params=params,
|
|
)
|
|
|
|
|
|
class DatasetIORouter(DatasetIO):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
return await self.routing_table.get_provider_impl(
|
|
dataset_id
|
|
).get_rows_paginated(
|
|
dataset_id=dataset_id,
|
|
rows_in_page=rows_in_page,
|
|
page_token=page_token,
|
|
filter_condition=filter_condition,
|
|
)
|
|
|
|
async def append_rows(self, dataset_id: str, rows: List[Dict[str, Any]]) -> None:
|
|
return await self.routing_table.get_provider_impl(dataset_id).append_rows(
|
|
dataset_id=dataset_id,
|
|
rows=rows,
|
|
)
|
|
|
|
|
|
class ScoringRouter(Scoring):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def score_batch(
|
|
self,
|
|
dataset_id: str,
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
save_results_dataset: bool = False,
|
|
) -> ScoreBatchResponse:
|
|
res = {}
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(
|
|
fn_identifier
|
|
).score_batch(
|
|
dataset_id=dataset_id,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
if save_results_dataset:
|
|
raise NotImplementedError("Save results dataset not implemented yet")
|
|
|
|
return ScoreBatchResponse(
|
|
results=res,
|
|
)
|
|
|
|
async def score(
|
|
self,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: Dict[str, Optional[ScoringFnParams]] = None,
|
|
) -> ScoreResponse:
|
|
res = {}
|
|
# look up and map each scoring function to its provider impl
|
|
for fn_identifier in scoring_functions.keys():
|
|
score_response = await self.routing_table.get_provider_impl(
|
|
fn_identifier
|
|
).score(
|
|
input_rows=input_rows,
|
|
scoring_functions={fn_identifier: scoring_functions[fn_identifier]},
|
|
)
|
|
res.update(score_response.results)
|
|
|
|
return ScoreResponse(results=res)
|
|
|
|
|
|
class EvalRouter(Eval):
|
|
def __init__(
|
|
self,
|
|
routing_table: RoutingTable,
|
|
) -> None:
|
|
self.routing_table = routing_table
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def run_eval(
|
|
self,
|
|
task_id: str,
|
|
task_config: AppEvalTaskConfig,
|
|
) -> Job:
|
|
return await self.routing_table.get_provider_impl(task_id).run_eval(
|
|
task_id=task_id,
|
|
task_config=task_config,
|
|
)
|
|
|
|
@webmethod(route="/eval/evaluate_rows", method="POST")
|
|
async def evaluate_rows(
|
|
self,
|
|
task_id: str,
|
|
input_rows: List[Dict[str, Any]],
|
|
scoring_functions: List[str],
|
|
task_config: EvalTaskConfig,
|
|
) -> EvaluateResponse:
|
|
return await self.routing_table.get_provider_impl(task_id).evaluate_rows(
|
|
task_id=task_id,
|
|
input_rows=input_rows,
|
|
scoring_functions=scoring_functions,
|
|
task_config=task_config,
|
|
)
|
|
|
|
async def job_status(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> Optional[JobStatus]:
|
|
return await self.routing_table.get_provider_impl(task_id).job_status(
|
|
task_id, job_id
|
|
)
|
|
|
|
async def job_cancel(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> None:
|
|
await self.routing_table.get_provider_impl(task_id).job_cancel(
|
|
task_id,
|
|
job_id,
|
|
)
|
|
|
|
async def job_result(
|
|
self,
|
|
task_id: str,
|
|
job_id: str,
|
|
) -> EvaluateResponse:
|
|
return await self.routing_table.get_provider_impl(task_id).job_result(
|
|
task_id,
|
|
job_id,
|
|
)
|