mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
190 lines
6 KiB
Python
190 lines
6 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator
|
|
|
|
from cerebras.cloud.sdk import AsyncCerebras
|
|
|
|
from llama_models.llama3.api.chat_format import ChatFormat
|
|
|
|
from llama_models.llama3.api.tokenizer import Tokenizer
|
|
|
|
from llama_stack.apis.inference import * # noqa: F403
|
|
|
|
from llama_models.datatypes import CoreModelId
|
|
|
|
from llama_stack.providers.utils.inference.model_registry import (
|
|
build_model_alias,
|
|
ModelRegistryHelper,
|
|
)
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
)
|
|
|
|
from .config import CerebrasImplConfig
|
|
|
|
|
|
model_aliases = [
|
|
build_model_alias(
|
|
"llama3.1-8b",
|
|
CoreModelId.llama3_1_8b_instruct.value,
|
|
),
|
|
build_model_alias(
|
|
"llama3.1-70b",
|
|
CoreModelId.llama3_1_70b_instruct.value,
|
|
),
|
|
]
|
|
|
|
|
|
class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
|
|
def __init__(self, config: CerebrasImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(
|
|
self,
|
|
model_aliases=model_aliases,
|
|
)
|
|
self.config = config
|
|
self.formatter = ChatFormat(Tokenizer.get_instance())
|
|
|
|
self.client = AsyncCerebras(
|
|
base_url=self.config.base_url, api_key=self.config.api_key
|
|
)
|
|
|
|
async def initialize(self) -> None:
|
|
return
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(
|
|
request,
|
|
)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
async def _nonstream_completion(
|
|
self, request: CompletionRequest
|
|
) -> CompletionResponse:
|
|
params = self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_completion_response(r, self.formatter)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_completion_stream_response(stream, self.formatter):
|
|
yield chunk
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
tool_choice=tool_choice,
|
|
tool_prompt_format=tool_prompt_format,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(
|
|
self, request: CompletionRequest
|
|
) -> CompletionResponse:
|
|
params = self._get_params(request)
|
|
|
|
r = await self.client.completions.create(**params)
|
|
|
|
return process_chat_completion_response(r, self.formatter)
|
|
|
|
async def _stream_chat_completion(
|
|
self, request: CompletionRequest
|
|
) -> AsyncGenerator:
|
|
params = self._get_params(request)
|
|
|
|
stream = await self.client.completions.create(**params)
|
|
|
|
async for chunk in process_chat_completion_stream_response(
|
|
stream, self.formatter
|
|
):
|
|
yield chunk
|
|
|
|
def _get_params(
|
|
self, request: Union[ChatCompletionRequest, CompletionRequest]
|
|
) -> dict:
|
|
if request.sampling_params and request.sampling_params.top_k:
|
|
raise ValueError("`top_k` not supported by Cerebras")
|
|
|
|
prompt = ""
|
|
if isinstance(request, ChatCompletionRequest):
|
|
prompt = chat_completion_request_to_prompt(
|
|
request, self.get_llama_model(request.model), self.formatter
|
|
)
|
|
elif isinstance(request, CompletionRequest):
|
|
prompt = completion_request_to_prompt(request, self.formatter)
|
|
else:
|
|
raise ValueError(f"Unknown request type {type(request)}")
|
|
|
|
return {
|
|
"model": request.model,
|
|
"prompt": prompt,
|
|
"stream": request.stream,
|
|
**get_sampling_options(request.sampling_params),
|
|
}
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[InterleavedContent],
|
|
) -> EmbeddingsResponse:
|
|
raise NotImplementedError()
|