mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This provides an initial [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses) implementation. The API is not yet complete, and this is more a proof-of-concept to show how we can store responses in our key-value stores and use them to support the Responses API concepts like `previous_response_id`. ## Test Plan I've added a new `tests/integration/openai_responses/test_openai_responses.py` as part of a test-driven development for this new API. I'm only testing this locally with the remote-vllm provider for now, but it should work with any of our inference providers since the only API it requires out of the inference provider is the `openai_chat_completion` endpoint. ``` VLLM_URL="http://localhost:8000/v1" \ INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack build --template remote-vllm --image-type venv --run ``` ``` LLAMA_STACK_CONFIG="http://localhost:8321" \ python -m pytest -v \ tests/integration/openai_responses/test_openai_responses.py \ --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
277 lines
8.9 KiB
Python
277 lines
8.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
import logging
|
|
import shutil
|
|
import uuid
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from llama_stack.apis.agents import (
|
|
Agent,
|
|
AgentConfig,
|
|
AgentCreateResponse,
|
|
Agents,
|
|
AgentSessionCreateResponse,
|
|
AgentStepResponse,
|
|
AgentToolGroup,
|
|
AgentTurnCreateRequest,
|
|
AgentTurnResumeRequest,
|
|
Document,
|
|
ListAgentSessionsResponse,
|
|
ListAgentsResponse,
|
|
OpenAIResponseInputMessage,
|
|
OpenAIResponseInputTool,
|
|
OpenAIResponseObject,
|
|
Session,
|
|
Turn,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
Inference,
|
|
ToolConfig,
|
|
ToolResponse,
|
|
ToolResponseMessage,
|
|
UserMessage,
|
|
)
|
|
from llama_stack.apis.safety import Safety
|
|
from llama_stack.apis.tools import ToolGroups, ToolRuntime
|
|
from llama_stack.apis.vector_io import VectorIO
|
|
from llama_stack.providers.utils.kvstore import InmemoryKVStoreImpl, kvstore_impl
|
|
|
|
from .agent_instance import ChatAgent
|
|
from .config import MetaReferenceAgentsImplConfig
|
|
from .openai_responses import OpenAIResponsesImpl
|
|
|
|
logger = logging.getLogger()
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class MetaReferenceAgentsImpl(Agents):
|
|
def __init__(
|
|
self,
|
|
config: MetaReferenceAgentsImplConfig,
|
|
inference_api: Inference,
|
|
vector_io_api: VectorIO,
|
|
safety_api: Safety,
|
|
tool_runtime_api: ToolRuntime,
|
|
tool_groups_api: ToolGroups,
|
|
):
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
self.vector_io_api = vector_io_api
|
|
self.safety_api = safety_api
|
|
self.tool_runtime_api = tool_runtime_api
|
|
self.tool_groups_api = tool_groups_api
|
|
|
|
self.in_memory_store = InmemoryKVStoreImpl()
|
|
self.openai_responses_impl = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.persistence_store = await kvstore_impl(self.config.persistence_store)
|
|
self.openai_responses_impl = OpenAIResponsesImpl(
|
|
self.persistence_store,
|
|
inference_api=self.inference_api,
|
|
tool_groups_api=self.tool_groups_api,
|
|
tool_runtime_api=self.tool_runtime_api,
|
|
)
|
|
|
|
# check if "bwrap" is available
|
|
if not shutil.which("bwrap"):
|
|
logger.warning("Warning: `bwrap` is not available. Code interpreter tool will not work correctly.")
|
|
|
|
async def create_agent(
|
|
self,
|
|
agent_config: AgentConfig,
|
|
) -> AgentCreateResponse:
|
|
agent_id = str(uuid.uuid4())
|
|
|
|
await self.persistence_store.set(
|
|
key=f"agent:{agent_id}",
|
|
value=agent_config.model_dump_json(),
|
|
)
|
|
return AgentCreateResponse(
|
|
agent_id=agent_id,
|
|
)
|
|
|
|
async def _get_agent_impl(self, agent_id: str) -> ChatAgent:
|
|
agent_config = await self.persistence_store.get(
|
|
key=f"agent:{agent_id}",
|
|
)
|
|
if not agent_config:
|
|
raise ValueError(f"Could not find agent config for {agent_id}")
|
|
|
|
try:
|
|
agent_config = json.loads(agent_config)
|
|
except json.JSONDecodeError as e:
|
|
raise ValueError(f"Could not JSON decode agent config for {agent_id}") from e
|
|
|
|
try:
|
|
agent_config = AgentConfig(**agent_config)
|
|
except Exception as e:
|
|
raise ValueError(f"Could not validate(?) agent config for {agent_id}") from e
|
|
|
|
return ChatAgent(
|
|
agent_id=agent_id,
|
|
agent_config=agent_config,
|
|
inference_api=self.inference_api,
|
|
safety_api=self.safety_api,
|
|
vector_io_api=self.vector_io_api,
|
|
tool_runtime_api=self.tool_runtime_api,
|
|
tool_groups_api=self.tool_groups_api,
|
|
persistence_store=(
|
|
self.persistence_store if agent_config.enable_session_persistence else self.in_memory_store
|
|
),
|
|
)
|
|
|
|
async def create_agent_session(
|
|
self,
|
|
agent_id: str,
|
|
session_name: str,
|
|
) -> AgentSessionCreateResponse:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
|
|
session_id = await agent.create_session(session_name)
|
|
return AgentSessionCreateResponse(
|
|
session_id=session_id,
|
|
)
|
|
|
|
async def create_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
messages: List[
|
|
Union[
|
|
UserMessage,
|
|
ToolResponseMessage,
|
|
]
|
|
],
|
|
toolgroups: Optional[List[AgentToolGroup]] = None,
|
|
documents: Optional[List[Document]] = None,
|
|
stream: Optional[bool] = False,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
request = AgentTurnCreateRequest(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
messages=messages,
|
|
stream=True,
|
|
toolgroups=toolgroups,
|
|
documents=documents,
|
|
tool_config=tool_config,
|
|
)
|
|
if stream:
|
|
return self._create_agent_turn_streaming(request)
|
|
else:
|
|
raise NotImplementedError("Non-streaming agent turns not yet implemented")
|
|
|
|
async def _create_agent_turn_streaming(
|
|
self,
|
|
request: AgentTurnCreateRequest,
|
|
) -> AsyncGenerator:
|
|
agent = await self._get_agent_impl(request.agent_id)
|
|
async for event in agent.create_and_execute_turn(request):
|
|
yield event
|
|
|
|
async def resume_agent_turn(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_id: str,
|
|
tool_responses: List[ToolResponse],
|
|
stream: Optional[bool] = False,
|
|
) -> AsyncGenerator:
|
|
request = AgentTurnResumeRequest(
|
|
agent_id=agent_id,
|
|
session_id=session_id,
|
|
turn_id=turn_id,
|
|
tool_responses=tool_responses,
|
|
stream=stream,
|
|
)
|
|
if stream:
|
|
return self._continue_agent_turn_streaming(request)
|
|
else:
|
|
raise NotImplementedError("Non-streaming agent turns not yet implemented")
|
|
|
|
async def _continue_agent_turn_streaming(
|
|
self,
|
|
request: AgentTurnResumeRequest,
|
|
) -> AsyncGenerator:
|
|
agent = await self._get_agent_impl(request.agent_id)
|
|
async for event in agent.resume_turn(request):
|
|
yield event
|
|
|
|
async def get_agents_turn(self, agent_id: str, session_id: str, turn_id: str) -> Turn:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
turn = await agent.storage.get_session_turn(session_id, turn_id)
|
|
return turn
|
|
|
|
async def get_agents_step(self, agent_id: str, session_id: str, turn_id: str, step_id: str) -> AgentStepResponse:
|
|
turn = await self.get_agents_turn(agent_id, session_id, turn_id)
|
|
for step in turn.steps:
|
|
if step.step_id == step_id:
|
|
return AgentStepResponse(step=step)
|
|
raise ValueError(f"Provided step_id {step_id} could not be found")
|
|
|
|
async def get_agents_session(
|
|
self,
|
|
agent_id: str,
|
|
session_id: str,
|
|
turn_ids: Optional[List[str]] = None,
|
|
) -> Session:
|
|
agent = await self._get_agent_impl(agent_id)
|
|
session_info = await agent.storage.get_session_info(session_id)
|
|
if session_info is None:
|
|
raise ValueError(f"Session {session_id} not found")
|
|
turns = await agent.storage.get_session_turns(session_id)
|
|
if turn_ids:
|
|
turns = [turn for turn in turns if turn.turn_id in turn_ids]
|
|
return Session(
|
|
session_name=session_info.session_name,
|
|
session_id=session_id,
|
|
turns=turns,
|
|
started_at=session_info.started_at,
|
|
)
|
|
|
|
async def delete_agents_session(self, agent_id: str, session_id: str) -> None:
|
|
await self.persistence_store.delete(f"session:{agent_id}:{session_id}")
|
|
|
|
async def delete_agent(self, agent_id: str) -> None:
|
|
await self.persistence_store.delete(f"agent:{agent_id}")
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def list_agents(self) -> ListAgentsResponse:
|
|
pass
|
|
|
|
async def get_agent(self, agent_id: str) -> Agent:
|
|
pass
|
|
|
|
async def list_agent_sessions(
|
|
self,
|
|
agent_id: str,
|
|
) -> ListAgentSessionsResponse:
|
|
pass
|
|
|
|
# OpenAI responses
|
|
async def get_openai_response(
|
|
self,
|
|
id: str,
|
|
) -> OpenAIResponseObject:
|
|
return await self.openai_responses_impl.get_openai_response(id)
|
|
|
|
async def create_openai_response(
|
|
self,
|
|
input: Union[str, List[OpenAIResponseInputMessage]],
|
|
model: str,
|
|
previous_response_id: Optional[str] = None,
|
|
store: Optional[bool] = True,
|
|
stream: Optional[bool] = False,
|
|
tools: Optional[List[OpenAIResponseInputTool]] = None,
|
|
) -> OpenAIResponseObject:
|
|
return await self.openai_responses_impl.create_openai_response(
|
|
input, model, previous_response_id, store, stream, tools
|
|
)
|