mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
# What does this PR do? This provides an initial [OpenAI Responses API](https://platform.openai.com/docs/api-reference/responses) implementation. The API is not yet complete, and this is more a proof-of-concept to show how we can store responses in our key-value stores and use them to support the Responses API concepts like `previous_response_id`. ## Test Plan I've added a new `tests/integration/openai_responses/test_openai_responses.py` as part of a test-driven development for this new API. I'm only testing this locally with the remote-vllm provider for now, but it should work with any of our inference providers since the only API it requires out of the inference provider is the `openai_chat_completion` endpoint. ``` VLLM_URL="http://localhost:8000/v1" \ INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \ llama stack build --template remote-vllm --image-type venv --run ``` ``` LLAMA_STACK_CONFIG="http://localhost:8321" \ python -m pytest -v \ tests/integration/openai_responses/test_openai_responses.py \ --text-model "meta-llama/Llama-3.2-3B-Instruct" ``` --------- Signed-off-by: Ben Browning <bbrownin@redhat.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
216 lines
7.9 KiB
Python
216 lines
7.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import copy
|
|
import inspect
|
|
import logging
|
|
import os
|
|
import tempfile
|
|
from pathlib import Path
|
|
|
|
import pytest
|
|
import yaml
|
|
from llama_stack_client import LlamaStackClient
|
|
from openai import OpenAI
|
|
|
|
from llama_stack import LlamaStackAsLibraryClient
|
|
from llama_stack.apis.datatypes import Api
|
|
from llama_stack.distribution.stack import run_config_from_adhoc_config_spec
|
|
from llama_stack.env import get_env_or_fail
|
|
|
|
from .recordable_mock import RecordableMock
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def provider_data():
|
|
# TODO: this needs to be generalized so each provider can have a sample provider data just
|
|
# like sample run config on which we can do replace_env_vars()
|
|
keymap = {
|
|
"TAVILY_SEARCH_API_KEY": "tavily_search_api_key",
|
|
"BRAVE_SEARCH_API_KEY": "brave_search_api_key",
|
|
"FIREWORKS_API_KEY": "fireworks_api_key",
|
|
"GEMINI_API_KEY": "gemini_api_key",
|
|
"OPENAI_API_KEY": "openai_api_key",
|
|
"TOGETHER_API_KEY": "together_api_key",
|
|
"ANTHROPIC_API_KEY": "anthropic_api_key",
|
|
"GROQ_API_KEY": "groq_api_key",
|
|
"WOLFRAM_ALPHA_API_KEY": "wolfram_alpha_api_key",
|
|
}
|
|
provider_data = {}
|
|
for key, value in keymap.items():
|
|
if os.environ.get(key):
|
|
provider_data[value] = os.environ[key]
|
|
return provider_data
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def llama_stack_client_with_mocked_inference(llama_stack_client, request):
|
|
"""
|
|
Returns a client with mocked inference APIs and tool runtime APIs that use recorded responses by default.
|
|
|
|
If --record-responses is passed, it will call the real APIs and record the responses.
|
|
"""
|
|
# TODO: will rework this to be more stable
|
|
return llama_stack_client
|
|
if not isinstance(llama_stack_client, LlamaStackAsLibraryClient):
|
|
logging.warning(
|
|
"llama_stack_client_with_mocked_inference is not supported for this client, returning original client without mocking"
|
|
)
|
|
return llama_stack_client
|
|
|
|
record_responses = request.config.getoption("--record-responses")
|
|
cache_dir = Path(__file__).parent / "recorded_responses"
|
|
|
|
# Create a shallow copy of the client to avoid modifying the original
|
|
client = copy.copy(llama_stack_client)
|
|
|
|
# Get the inference API used by the agents implementation
|
|
agents_impl = client.async_client.impls[Api.agents]
|
|
original_inference = agents_impl.inference_api
|
|
|
|
# Create a new inference object with the same attributes
|
|
inference_mock = copy.copy(original_inference)
|
|
|
|
# Replace the methods with recordable mocks
|
|
inference_mock.chat_completion = RecordableMock(
|
|
original_inference.chat_completion, cache_dir, "chat_completion", record=record_responses
|
|
)
|
|
inference_mock.completion = RecordableMock(
|
|
original_inference.completion, cache_dir, "text_completion", record=record_responses
|
|
)
|
|
inference_mock.embeddings = RecordableMock(
|
|
original_inference.embeddings, cache_dir, "embeddings", record=record_responses
|
|
)
|
|
|
|
# Replace the inference API in the agents implementation
|
|
agents_impl.inference_api = inference_mock
|
|
|
|
original_tool_runtime_api = agents_impl.tool_runtime_api
|
|
tool_runtime_mock = copy.copy(original_tool_runtime_api)
|
|
|
|
# Replace the methods with recordable mocks
|
|
tool_runtime_mock.invoke_tool = RecordableMock(
|
|
original_tool_runtime_api.invoke_tool, cache_dir, "invoke_tool", record=record_responses
|
|
)
|
|
agents_impl.tool_runtime_api = tool_runtime_mock
|
|
|
|
# Also update the client.inference for consistency
|
|
client.inference = inference_mock
|
|
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def inference_provider_type(llama_stack_client):
|
|
providers = llama_stack_client.providers.list()
|
|
inference_providers = [p for p in providers if p.api == "inference"]
|
|
assert len(inference_providers) > 0, "No inference providers found"
|
|
return inference_providers[0].provider_type
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def client_with_models(
|
|
llama_stack_client,
|
|
text_model_id,
|
|
vision_model_id,
|
|
embedding_model_id,
|
|
embedding_dimension,
|
|
judge_model_id,
|
|
):
|
|
client = llama_stack_client
|
|
|
|
providers = [p for p in client.providers.list() if p.api == "inference"]
|
|
assert len(providers) > 0, "No inference providers found"
|
|
inference_providers = [p.provider_id for p in providers if p.provider_type != "inline::sentence-transformers"]
|
|
|
|
model_ids = {m.identifier for m in client.models.list()}
|
|
model_ids.update(m.provider_resource_id for m in client.models.list())
|
|
|
|
if text_model_id and text_model_id not in model_ids:
|
|
client.models.register(model_id=text_model_id, provider_id=inference_providers[0])
|
|
if vision_model_id and vision_model_id not in model_ids:
|
|
client.models.register(model_id=vision_model_id, provider_id=inference_providers[0])
|
|
if judge_model_id and judge_model_id not in model_ids:
|
|
client.models.register(model_id=judge_model_id, provider_id=inference_providers[0])
|
|
|
|
if embedding_model_id and embedding_model_id not in model_ids:
|
|
# try to find a provider that supports embeddings, if sentence-transformers is not available
|
|
selected_provider = None
|
|
for p in providers:
|
|
if p.provider_type == "inline::sentence-transformers":
|
|
selected_provider = p
|
|
break
|
|
|
|
selected_provider = selected_provider or providers[0]
|
|
client.models.register(
|
|
model_id=embedding_model_id,
|
|
provider_id=selected_provider.provider_id,
|
|
model_type="embedding",
|
|
metadata={"embedding_dimension": embedding_dimension or 384},
|
|
)
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def available_shields(llama_stack_client):
|
|
return [shield.identifier for shield in llama_stack_client.shields.list()]
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def model_providers(llama_stack_client):
|
|
return {x.provider_id for x in llama_stack_client.providers.list() if x.api == "inference"}
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def skip_if_no_model(request):
|
|
model_fixtures = ["text_model_id", "vision_model_id", "embedding_model_id", "judge_model_id"]
|
|
test_func = request.node.function
|
|
|
|
actual_params = inspect.signature(test_func).parameters.keys()
|
|
for fixture in model_fixtures:
|
|
# Only check fixtures that are actually in the test function's signature
|
|
if fixture in actual_params and fixture in request.fixturenames and not request.getfixturevalue(fixture):
|
|
pytest.skip(f"{fixture} empty - skipping test")
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def llama_stack_client(request, provider_data, text_model_id):
|
|
config = request.config.getoption("--stack-config")
|
|
if not config:
|
|
config = get_env_or_fail("LLAMA_STACK_CONFIG")
|
|
|
|
if not config:
|
|
raise ValueError("You must specify either --stack-config or LLAMA_STACK_CONFIG")
|
|
|
|
# check if this looks like a URL
|
|
if config.startswith("http") or "//" in config:
|
|
return LlamaStackClient(
|
|
base_url=config,
|
|
provider_data=provider_data,
|
|
)
|
|
|
|
if "=" in config:
|
|
run_config = run_config_from_adhoc_config_spec(config)
|
|
run_config_file = tempfile.NamedTemporaryFile(delete=False, suffix=".yaml")
|
|
with open(run_config_file.name, "w") as f:
|
|
yaml.dump(run_config.model_dump(), f)
|
|
config = run_config_file.name
|
|
|
|
client = LlamaStackAsLibraryClient(
|
|
config,
|
|
provider_data=provider_data,
|
|
skip_logger_removal=True,
|
|
)
|
|
if not client.initialize():
|
|
raise RuntimeError("Initialization failed")
|
|
|
|
return client
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def openai_client(client_with_models):
|
|
base_url = f"{client_with_models.base_url}/v1/openai/v1"
|
|
return OpenAI(base_url=base_url, api_key="fake")
|