llama-stack-mirror/llama_stack/providers/remote/eval/nvidia
Ihar Hrachyshka 9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00
..
__init__.py chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00
config.py chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00
eval.py chore: enable pyupgrade fixes (#1806) 2025-05-01 14:23:50 -07:00
README.md feat: Add NVIDIA Eval integration (#1890) 2025-04-24 17:12:42 -07:00

NVIDIA NeMo Evaluator Eval Provider

Overview

For the first integration, Benchmarks are mapped to Evaluation Configs on in the NeMo Evaluator. The full evaluation config object is provided as part of the meta-data. The dataset_id and scoring_functions are not used.

Below are a few examples of how to register a benchmark, which in turn will create an evaluation config in NeMo Evaluator and how to trigger an evaluation.

Example for register an academic benchmark

POST /eval/benchmarks
{
  "benchmark_id": "mmlu",
  "dataset_id": "",
  "scoring_functions": [],
  "metadata": {
    "type": "mmlu"
  }
}

Example for register a custom evaluation

POST /eval/benchmarks
{
  "benchmark_id": "my-custom-benchmark",
  "dataset_id": "",
  "scoring_functions": [],
  "metadata": {
    "type": "custom",
    "params": {
      "parallelism": 8
    },
    "tasks": {
      "qa": {
        "type": "completion",
        "params": {
          "template": {
            "prompt": "{{prompt}}",
            "max_tokens": 200
          }
        },
        "dataset": {
          "files_url": "hf://datasets/default/sample-basic-test/testing/testing.jsonl"
        },
        "metrics": {
          "bleu": {
            "type": "bleu",
            "params": {
              "references": [
                "{{ideal_response}}"
              ]
            }
          }
        }
      }
    }
  }
}

Example for triggering a benchmark/custom evaluation

POST /eval/benchmarks/{benchmark_id}/jobs
{
  "benchmark_id": "my-custom-benchmark",
  "benchmark_config": {
    "eval_candidate": {
      "type": "model",
      "model": "meta-llama/Llama3.1-8B-Instruct",
      "sampling_params": {
        "max_tokens": 100,
        "temperature": 0.7
      }
    },
    "scoring_params": {}
  }
}

Response example:

{
    "job_id": "eval-1234",
    "status": "in_progress"
}

Example for getting the status of a job

GET /eval/benchmarks/{benchmark_id}/jobs/{job_id}

Response example:

{
  "job_id": "eval-1234",
  "status": "in_progress"
}

Example for cancelling a job

POST /eval/benchmarks/{benchmark_id}/jobs/{job_id}/cancel

Example for getting the results

GET /eval/benchmarks/{benchmark_id}/results
{
  "generations": [],
  "scores": {
    "{benchmark_id}": {
      "score_rows": [],
      "aggregated_results": {
        "tasks": {},
        "groups": {}
      }
    }
  }
}