mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 19:04:19 +00:00
# What does this PR do? Implemetation of NeMO Datastore register, unregister API. Open Issues: - provider_id gets set to `localfs` in client.datasets.register() as it is specified in routing_tables.py: DatasetsRoutingTable see: #1860 Currently I have passed `"provider_id":"nvidia"` in metadata and have parsed that in `DatasetsRoutingTable` (Not the best approach, but just a quick workaround to make it work for now.) ## Test Plan - Unit test cases: `pytest tests/unit/providers/nvidia/test_datastore.py` ```bash ========================================================== test session starts =========================================================== platform linux -- Python 3.10.0, pytest-8.3.5, pluggy-1.5.0 rootdir: /home/ubuntu/llama-stack configfile: pyproject.toml plugins: anyio-4.9.0, asyncio-0.26.0, nbval-0.11.0, metadata-3.1.1, html-4.1.1, cov-6.1.0 asyncio: mode=strict, asyncio_default_fixture_loop_scope=None, asyncio_default_test_loop_scope=function collected 2 items tests/unit/providers/nvidia/test_datastore.py .. [100%] ============================================================ warnings summary ============================================================ ====================================================== 2 passed, 1 warning in 0.84s ====================================================== ``` cc: @dglogo, @mattf, @yanxi0830
146 lines
5.1 KiB
Python
146 lines
5.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from pathlib import Path
|
|
|
|
from llama_stack.distribution.datatypes import ModelInput, Provider, ShieldInput, ToolGroupInput
|
|
from llama_stack.providers.remote.datasetio.nvidia import NvidiaDatasetIOConfig
|
|
from llama_stack.providers.remote.eval.nvidia import NVIDIAEvalConfig
|
|
from llama_stack.providers.remote.inference.nvidia import NVIDIAConfig
|
|
from llama_stack.providers.remote.inference.nvidia.models import MODEL_ENTRIES
|
|
from llama_stack.providers.remote.safety.nvidia import NVIDIASafetyConfig
|
|
from llama_stack.templates.template import DistributionTemplate, RunConfigSettings, get_model_registry
|
|
|
|
|
|
def get_distribution_template() -> DistributionTemplate:
|
|
providers = {
|
|
"inference": ["remote::nvidia"],
|
|
"vector_io": ["inline::faiss"],
|
|
"safety": ["remote::nvidia"],
|
|
"agents": ["inline::meta-reference"],
|
|
"telemetry": ["inline::meta-reference"],
|
|
"eval": ["remote::nvidia"],
|
|
"post_training": ["remote::nvidia"],
|
|
"datasetio": ["inline::localfs", "remote::nvidia"],
|
|
"scoring": ["inline::basic"],
|
|
"tool_runtime": ["inline::rag-runtime"],
|
|
}
|
|
|
|
inference_provider = Provider(
|
|
provider_id="nvidia",
|
|
provider_type="remote::nvidia",
|
|
config=NVIDIAConfig.sample_run_config(),
|
|
)
|
|
safety_provider = Provider(
|
|
provider_id="nvidia",
|
|
provider_type="remote::nvidia",
|
|
config=NVIDIASafetyConfig.sample_run_config(),
|
|
)
|
|
datasetio_provider = Provider(
|
|
provider_id="nvidia",
|
|
provider_type="remote::nvidia",
|
|
config=NvidiaDatasetIOConfig.sample_run_config(),
|
|
)
|
|
eval_provider = Provider(
|
|
provider_id="nvidia",
|
|
provider_type="remote::nvidia",
|
|
config=NVIDIAEvalConfig.sample_run_config(),
|
|
)
|
|
inference_model = ModelInput(
|
|
model_id="${env.INFERENCE_MODEL}",
|
|
provider_id="nvidia",
|
|
)
|
|
safety_model = ModelInput(
|
|
model_id="${env.SAFETY_MODEL}",
|
|
provider_id="nvidia",
|
|
)
|
|
|
|
available_models = {
|
|
"nvidia": MODEL_ENTRIES,
|
|
}
|
|
default_tool_groups = [
|
|
ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
),
|
|
]
|
|
|
|
default_models = get_model_registry(available_models)
|
|
return DistributionTemplate(
|
|
name="nvidia",
|
|
distro_type="self_hosted",
|
|
description="Use NVIDIA NIM for running LLM inference, evaluation and safety",
|
|
container_image=None,
|
|
template_path=Path(__file__).parent / "doc_template.md",
|
|
providers=providers,
|
|
available_models_by_provider=available_models,
|
|
run_configs={
|
|
"run.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [inference_provider],
|
|
"datasetio": [datasetio_provider],
|
|
"eval": [eval_provider],
|
|
},
|
|
default_models=default_models,
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
"run-with-safety.yaml": RunConfigSettings(
|
|
provider_overrides={
|
|
"inference": [
|
|
inference_provider,
|
|
safety_provider,
|
|
],
|
|
"eval": [eval_provider],
|
|
},
|
|
default_models=[inference_model, safety_model],
|
|
default_shields=[ShieldInput(shield_id="${env.SAFETY_MODEL}", provider_id="nvidia")],
|
|
default_tool_groups=default_tool_groups,
|
|
),
|
|
},
|
|
run_config_env_vars={
|
|
"NVIDIA_API_KEY": (
|
|
"",
|
|
"NVIDIA API Key",
|
|
),
|
|
"NVIDIA_APPEND_API_VERSION": (
|
|
"True",
|
|
"Whether to append the API version to the base_url",
|
|
),
|
|
## Nemo Customizer related variables
|
|
"NVIDIA_DATASET_NAMESPACE": (
|
|
"default",
|
|
"NVIDIA Dataset Namespace",
|
|
),
|
|
"NVIDIA_PROJECT_ID": (
|
|
"test-project",
|
|
"NVIDIA Project ID",
|
|
),
|
|
"NVIDIA_CUSTOMIZER_URL": (
|
|
"https://customizer.api.nvidia.com",
|
|
"NVIDIA Customizer URL",
|
|
),
|
|
"NVIDIA_OUTPUT_MODEL_DIR": (
|
|
"test-example-model@v1",
|
|
"NVIDIA Output Model Directory",
|
|
),
|
|
"GUARDRAILS_SERVICE_URL": (
|
|
"http://0.0.0.0:7331",
|
|
"URL for the NeMo Guardrails Service",
|
|
),
|
|
"NVIDIA_EVALUATOR_URL": (
|
|
"http://0.0.0.0:7331",
|
|
"URL for the NeMo Evaluator Service",
|
|
),
|
|
"INFERENCE_MODEL": (
|
|
"Llama3.1-8B-Instruct",
|
|
"Inference model",
|
|
),
|
|
"SAFETY_MODEL": (
|
|
"meta/llama-3.1-8b-instruct",
|
|
"Name of the model to use for safety",
|
|
),
|
|
},
|
|
)
|