llama-stack-mirror/tests/verifications/openai_api/test_responses.py
Ben Browning 8ede67b809 More work on file_search verification test
This gets the file_search verification test working against ollama,
fireworks, and api.openai.com. We don't have the entirety of the
vector store API implemented in Llama Stack yet, so this still has a
bit of a hack to swap between using only OpenAI-compatible APIs versus
using the LlamaStackClient to insert content into our vector stores.

Outside of actually inserting file contents, the rest of the test
works the same and uses only the OpenAI client for all of these providers.

How to run the tests:

Ollama (sometimes flakes with small model):

```
ollama run llama3.2:3b

INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct" \
llama stack run ./llama_stack/templates/ollama/run.yaml \
  --image-type venv \
  --env OLLAMA_URL="http://0.0.0.0:11434"

pytest -sv \
  'tests/verifications/openai_api/test_responses.py::test_response_non_streaming_file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-3.2-3B-Instruct
```

Fireworks via Llama Stack:

```
llama stack run llama_stack/templates/fireworks/run.yaml

pytest -sv \
  'tests/verifications/openai_api/test_responses.py::test_response_non_streaming_file_search' \
  --base-url=http://localhost:8321/v1/openai/v1 \
  --model meta-llama/Llama-3.3-70B-Instruct
```

OpenAI directly:

```
pytest -sv \
  'tests/verifications/openai_api/test_responses.py::test_response_non_streaming_file_search' \
  --base-url=https://api.openai.com/v1 \
  --model gpt-4o
```

Signed-off-by: Ben Browning <bbrownin@redhat.com>
2025-06-13 09:36:04 -04:00

675 lines
28 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import time
import httpx
import openai
import pytest
from llama_stack_client import LlamaStackClient
from llama_stack import LlamaStackAsLibraryClient
from llama_stack.distribution.datatypes import AuthenticationRequiredError
from tests.common.mcp import dependency_tools, make_mcp_server
from tests.verifications.openai_api.fixtures.fixtures import (
case_id_generator,
get_base_test_name,
should_skip_test,
)
from tests.verifications.openai_api.fixtures.load import load_test_cases
responses_test_cases = load_test_cases("responses")
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_basic(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=False,
)
output_text = response.output_text.lower().strip()
assert len(output_text) > 0
assert case["output"].lower() in output_text
retrieved_response = openai_client.responses.retrieve(response_id=response.id)
assert retrieved_response.output_text == response.output_text
next_response = openai_client.responses.create(
model=model, input="Repeat your previous response in all caps.", previous_response_id=response.id
)
next_output_text = next_response.output_text.strip()
assert case["output"].upper() in next_output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_streaming_basic(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
import time
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=True,
)
# Track events and timing to verify proper streaming
events = []
event_times = []
response_id = ""
start_time = time.time()
for chunk in response:
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
if chunk.type == "response.created":
# Verify response.created is emitted first and immediately
assert len(events) == 1, "response.created should be the first event"
assert event_times[0] < 0.1, "response.created should be emitted immediately"
assert chunk.response.status == "in_progress"
response_id = chunk.response.id
elif chunk.type == "response.completed":
# Verify response.completed comes after response.created
assert len(events) >= 2, "response.completed should come after response.created"
assert chunk.response.status == "completed"
assert chunk.response.id == response_id, "Response ID should be consistent"
# Verify content quality
output_text = chunk.response.output_text.lower().strip()
assert len(output_text) > 0, "Response should have content"
assert case["output"].lower() in output_text, f"Expected '{case['output']}' in response"
# Verify we got both required events
event_types = [event.type for event in events]
assert "response.created" in event_types, "Missing response.created event"
assert "response.completed" in event_types, "Missing response.completed event"
# Verify event order
created_index = event_types.index("response.created")
completed_index = event_types.index("response.completed")
assert created_index < completed_index, "response.created should come before response.completed"
# Verify stored response matches streamed response
retrieved_response = openai_client.responses.retrieve(response_id=response_id)
final_event = events[-1]
assert retrieved_response.output_text == final_event.response.output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_basic"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_streaming_incremental_content(request, openai_client, model, provider, verification_config, case):
"""Test that streaming actually delivers content incrementally, not just at the end."""
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
import time
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=True,
)
# Track all events and their content to verify incremental streaming
events = []
content_snapshots = []
event_times = []
start_time = time.time()
for chunk in response:
current_time = time.time()
event_times.append(current_time - start_time)
events.append(chunk)
# Track content at each event based on event type
if chunk.type == "response.output_text.delta":
# For delta events, track the delta content
content_snapshots.append(chunk.delta)
elif hasattr(chunk, "response") and hasattr(chunk.response, "output_text"):
# For response.created/completed events, track the full output_text
content_snapshots.append(chunk.response.output_text)
else:
content_snapshots.append("")
# Verify we have the expected events
event_types = [event.type for event in events]
assert "response.created" in event_types, "Missing response.created event"
assert "response.completed" in event_types, "Missing response.completed event"
# Check if we have incremental content updates
created_index = event_types.index("response.created")
completed_index = event_types.index("response.completed")
# The key test: verify content progression
created_content = content_snapshots[created_index]
completed_content = content_snapshots[completed_index]
# Verify that response.created has empty or minimal content
assert len(created_content) == 0, f"response.created should have empty content, got: {repr(created_content[:100])}"
# Verify that response.completed has the full content
assert len(completed_content) > 0, "response.completed should have content"
assert case["output"].lower() in completed_content.lower(), f"Expected '{case['output']}' in final content"
# Check for true incremental streaming by looking for delta events
delta_events = [i for i, event_type in enumerate(event_types) if event_type == "response.output_text.delta"]
# Assert that we have delta events (true incremental streaming)
assert len(delta_events) > 0, "Expected delta events for true incremental streaming, but found none"
# Verify delta events have content and accumulate to final content
delta_content_total = ""
non_empty_deltas = 0
for delta_idx in delta_events:
delta_content = content_snapshots[delta_idx]
if delta_content:
delta_content_total += delta_content
non_empty_deltas += 1
# Assert that we have meaningful delta content
assert non_empty_deltas > 0, "Delta events found but none contain content"
assert len(delta_content_total) > 0, "Delta events found but total delta content is empty"
# Verify that the accumulated delta content matches the final content
assert delta_content_total.strip() == completed_content.strip(), (
f"Delta content '{delta_content_total}' should match final content '{completed_content}'"
)
# Verify timing: delta events should come between created and completed
for delta_idx in delta_events:
assert created_index < delta_idx < completed_index, (
f"Delta event at index {delta_idx} should be between created ({created_index}) and completed ({completed_index})"
)
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_multi_turn"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_multi_turn(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
previous_response_id = None
for turn in case["turns"]:
response = openai_client.responses.create(
model=model,
input=turn["input"],
previous_response_id=previous_response_id,
tools=turn["tools"] if "tools" in turn else None,
)
previous_response_id = response.id
output_text = response.output_text.lower()
assert turn["output"].lower() in output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_web_search"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_web_search(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=case["tools"],
stream=False,
)
assert len(response.output) > 1
assert response.output[0].type == "web_search_call"
assert response.output[0].status == "completed"
assert response.output[1].type == "message"
assert response.output[1].status == "completed"
assert response.output[1].role == "assistant"
assert len(response.output[1].content) > 0
assert case["output"].lower() in response.output_text.lower().strip()
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_file_search"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_file_search(
base_url, request, openai_client, model, provider, verification_config, tmp_path, case
):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API file search is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
vector_stores = openai_client.vector_stores.list()
for vector_store in vector_stores:
if vector_store.name == "test_vector_store":
openai_client.vector_stores.delete(vector_store_id=vector_store.id)
vector_store = openai_client.vector_stores.create(
name="test_vector_store",
# extra_body={
# "embedding_model": "all-MiniLM-L6-v2",
# "embedding_dimension": 384,
# },
)
doc_content = "Llama 4 Maverick has 128 experts"
chunks = [
{
"content": doc_content,
"mime_type": "text/plain",
"metadata": {
"document_id": "doc1",
},
},
]
file_name = "test_response_non_streaming_file_search.txt"
files = openai_client.files.list()
for file in files:
if file.filename == file_name:
openai_client.files.delete(file_id=file.id)
file_path = tmp_path / file_name
file_path.write_text(doc_content)
file_response = openai_client.files.create(file=open(file_path, "rb"), purpose="assistants")
if "api.openai.com" in base_url:
file_attach_response = openai_client.vector_stores.files.create(
vector_store_id=vector_store.id,
file_id=file_response.id,
)
while file_attach_response.status == "in_progress":
time.sleep(0.1)
file_attach_response = openai_client.vector_stores.files.retrieve(
vector_store_id=vector_store.id,
file_id=file_response.id,
)
else:
# TODO: only until we have a way to insert content into OpenAI vector stores
lls_client = LlamaStackClient(base_url=base_url.replace("/v1/openai/v1", ""))
lls_client.vector_io.insert(vector_db_id=vector_store.id, chunks=chunks)
tools = case["tools"]
for tool in tools:
if tool["type"] == "file_search":
tool["vector_store_ids"] = [vector_store.id]
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=case["tools"],
stream=False,
include=["file_search_call.results"],
)
assert len(response.output) > 1
assert response.output[0].type == "file_search_call"
assert response.output[0].status == "completed"
assert response.output[0].queries # ensure it's some non-empty list
assert response.output[0].results
assert response.output[0].results[0].text == doc_content
assert response.output[0].results[0].score > 0
assert response.output[1].type == "message"
assert response.output[1].status == "completed"
assert response.output[1].role == "assistant"
assert len(response.output[1].content) > 0
assert case["output"].lower() in response.output_text.lower().strip()
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_mcp_tool"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_mcp_tool(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
with make_mcp_server() as mcp_server_info:
tools = case["tools"]
for tool in tools:
if tool["type"] == "mcp":
tool["server_url"] = mcp_server_info["server_url"]
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=tools,
stream=False,
)
assert len(response.output) >= 3
list_tools = response.output[0]
assert list_tools.type == "mcp_list_tools"
assert list_tools.server_label == "localmcp"
assert len(list_tools.tools) == 2
assert {t["name"] for t in list_tools.tools} == {"get_boiling_point", "greet_everyone"}
call = response.output[1]
assert call.type == "mcp_call"
assert call.name == "get_boiling_point"
assert json.loads(call.arguments) == {"liquid_name": "myawesomeliquid", "celsius": True}
assert call.error is None
assert "-100" in call.output
# sometimes the model will call the tool again, so we need to get the last message
message = response.output[-1]
text_content = message.content[0].text
assert "boiling point" in text_content.lower()
with make_mcp_server(required_auth_token="test-token") as mcp_server_info:
tools = case["tools"]
for tool in tools:
if tool["type"] == "mcp":
tool["server_url"] = mcp_server_info["server_url"]
exc_type = (
AuthenticationRequiredError
if isinstance(openai_client, LlamaStackAsLibraryClient)
else (httpx.HTTPStatusError, openai.AuthenticationError)
)
with pytest.raises(exc_type):
openai_client.responses.create(
model=model,
input=case["input"],
tools=tools,
stream=False,
)
for tool in tools:
if tool["type"] == "mcp":
tool["server_url"] = mcp_server_info["server_url"]
tool["headers"] = {"Authorization": "Bearer test-token"}
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=tools,
stream=False,
)
assert len(response.output) >= 3
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_custom_tool"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_custom_tool(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.responses.create(
model=model,
input=case["input"],
tools=case["tools"],
stream=False,
)
assert len(response.output) == 1
assert response.output[0].type == "function_call"
assert response.output[0].status == "completed"
assert response.output[0].name == "get_weather"
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_image"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_image(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
response = openai_client.responses.create(
model=model,
input=case["input"],
stream=False,
)
output_text = response.output_text.lower()
assert case["output"].lower() in output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_multi_turn_image"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_multi_turn_image(request, openai_client, model, provider, verification_config, case):
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
previous_response_id = None
for turn in case["turns"]:
response = openai_client.responses.create(
model=model,
input=turn["input"],
previous_response_id=previous_response_id,
tools=turn["tools"] if "tools" in turn else None,
)
previous_response_id = response.id
output_text = response.output_text.lower()
assert turn["output"].lower() in output_text
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_multi_turn_tool_execution"]["test_params"]["case"],
ids=case_id_generator,
)
def test_response_non_streaming_multi_turn_tool_execution(
request, openai_client, model, provider, verification_config, case
):
"""Test multi-turn tool execution where multiple MCP tool calls are performed in sequence."""
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
with make_mcp_server(tools=dependency_tools()) as mcp_server_info:
tools = case["tools"]
# Replace the placeholder URL with the actual server URL
for tool in tools:
if tool["type"] == "mcp" and tool["server_url"] == "<FILLED_BY_TEST_RUNNER>":
tool["server_url"] = mcp_server_info["server_url"]
response = openai_client.responses.create(
input=case["input"],
model=model,
tools=tools,
)
# Verify we have MCP tool calls in the output
mcp_list_tools = [output for output in response.output if output.type == "mcp_list_tools"]
mcp_calls = [output for output in response.output if output.type == "mcp_call"]
message_outputs = [output for output in response.output if output.type == "message"]
# Should have exactly 1 MCP list tools message (at the beginning)
assert len(mcp_list_tools) == 1, f"Expected exactly 1 mcp_list_tools, got {len(mcp_list_tools)}"
assert mcp_list_tools[0].server_label == "localmcp"
assert len(mcp_list_tools[0].tools) == 5 # Updated for dependency tools
expected_tool_names = {
"get_user_id",
"get_user_permissions",
"check_file_access",
"get_experiment_id",
"get_experiment_results",
}
assert {t["name"] for t in mcp_list_tools[0].tools} == expected_tool_names
assert len(mcp_calls) >= 1, f"Expected at least 1 mcp_call, got {len(mcp_calls)}"
for mcp_call in mcp_calls:
assert mcp_call.error is None, f"MCP call should not have errors, got: {mcp_call.error}"
assert len(message_outputs) >= 1, f"Expected at least 1 message output, got {len(message_outputs)}"
final_message = message_outputs[-1]
assert final_message.role == "assistant", f"Final message should be from assistant, got {final_message.role}"
assert final_message.status == "completed", f"Final message should be completed, got {final_message.status}"
assert len(final_message.content) > 0, "Final message should have content"
expected_output = case["output"]
assert expected_output.lower() in response.output_text.lower(), (
f"Expected '{expected_output}' to appear in response: {response.output_text}"
)
@pytest.mark.parametrize(
"case",
responses_test_cases["test_response_multi_turn_tool_execution_streaming"]["test_params"]["case"],
ids=case_id_generator,
)
async def test_response_streaming_multi_turn_tool_execution(
request, openai_client, model, provider, verification_config, case
):
"""Test streaming multi-turn tool execution where multiple MCP tool calls are performed in sequence."""
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
with make_mcp_server(tools=dependency_tools()) as mcp_server_info:
tools = case["tools"]
# Replace the placeholder URL with the actual server URL
for tool in tools:
if tool["type"] == "mcp" and tool["server_url"] == "<FILLED_BY_TEST_RUNNER>":
tool["server_url"] = mcp_server_info["server_url"]
stream = openai_client.responses.create(
input=case["input"],
model=model,
tools=tools,
stream=True,
)
chunks = []
async for chunk in stream:
chunks.append(chunk)
# Should have at least response.created and response.completed
assert len(chunks) >= 2, f"Expected at least 2 chunks (created + completed), got {len(chunks)}"
# First chunk should be response.created
assert chunks[0].type == "response.created", f"First chunk should be response.created, got {chunks[0].type}"
# Last chunk should be response.completed
assert chunks[-1].type == "response.completed", (
f"Last chunk should be response.completed, got {chunks[-1].type}"
)
# Get the final response from the last chunk
final_chunk = chunks[-1]
if hasattr(final_chunk, "response"):
final_response = final_chunk.response
# Verify multi-turn MCP tool execution results
mcp_list_tools = [output for output in final_response.output if output.type == "mcp_list_tools"]
mcp_calls = [output for output in final_response.output if output.type == "mcp_call"]
message_outputs = [output for output in final_response.output if output.type == "message"]
# Should have exactly 1 MCP list tools message (at the beginning)
assert len(mcp_list_tools) == 1, f"Expected exactly 1 mcp_list_tools, got {len(mcp_list_tools)}"
assert mcp_list_tools[0].server_label == "localmcp"
assert len(mcp_list_tools[0].tools) == 5 # Updated for dependency tools
expected_tool_names = {
"get_user_id",
"get_user_permissions",
"check_file_access",
"get_experiment_id",
"get_experiment_results",
}
assert {t["name"] for t in mcp_list_tools[0].tools} == expected_tool_names
# Should have at least 1 MCP call (the model should call at least one tool)
assert len(mcp_calls) >= 1, f"Expected at least 1 mcp_call, got {len(mcp_calls)}"
# All MCP calls should be completed (verifies our tool execution works)
for mcp_call in mcp_calls:
assert mcp_call.error is None, f"MCP call should not have errors, got: {mcp_call.error}"
# Should have at least one final message response
assert len(message_outputs) >= 1, f"Expected at least 1 message output, got {len(message_outputs)}"
# Final message should be from assistant and completed
final_message = message_outputs[-1]
assert final_message.role == "assistant", (
f"Final message should be from assistant, got {final_message.role}"
)
assert final_message.status == "completed", f"Final message should be completed, got {final_message.status}"
assert len(final_message.content) > 0, "Final message should have content"
# Check that the expected output appears in the response
expected_output = case["output"]
assert expected_output.lower() in final_response.output_text.lower(), (
f"Expected '{expected_output}' to appear in response: {final_response.output_text}"
)
@pytest.mark.parametrize(
"text_format",
# Not testing json_object because most providers don't actually support it.
[
{"type": "text"},
{
"type": "json_schema",
"name": "capitals",
"description": "A schema for the capital of each country",
"schema": {"type": "object", "properties": {"capital": {"type": "string"}}},
"strict": True,
},
],
)
def test_response_text_format(request, openai_client, model, provider, verification_config, text_format):
if isinstance(openai_client, LlamaStackAsLibraryClient):
pytest.skip("Responses API text format is not yet supported in library client.")
test_name_base = get_base_test_name(request)
if should_skip_test(verification_config, provider, model, test_name_base):
pytest.skip(f"Skipping {test_name_base} for model {model} on provider {provider} based on config.")
stream = False
response = openai_client.responses.create(
model=model,
input="What is the capital of France?",
stream=stream,
text={"format": text_format},
)
# by_alias=True is needed because otherwise Pydantic renames our "schema" field
assert response.text.format.model_dump(exclude_none=True, by_alias=True) == text_format
assert "paris" in response.output_text.lower()
if text_format["type"] == "json_schema":
assert "paris" in json.loads(response.output_text)["capital"].lower()