Original telemetry outputs for agent turns look like this. Note: how output was a `str(message)` making it difficult to read them back for downstream tasks ( eg. building eval datasets ) ``` { │ │ 'input': [ │ │ │ '{"role":"system","content":"You are a helpful assistant. Use search tool to answer the questions. "}', │ │ │ '{"role":"user","content":"Which teams played in the NBA western conference finals of 2024","context":null}' │ │ ], │ │ 'output': "content: tool_calls: [ToolCall(call_id='8b7294ec-a83f-4798-ad8f-6bed662f08b6', tool_name=<BuiltinTool.brave_search: 'brave_search'>, arguments={'query': 'NBA Western Conference Finals 2024 teams'})]" │ }, ``` Updated the outputs to be structured . ## Test ```python import uuid from llama_stack_client.lib.agents.agent import Agent from llama_stack_client.lib.agents.event_logger import EventLogger from llama_stack_client.types.agent_create_params import AgentConfig model_id = "meta-llama/Llama-3.1-8B-Instruct" agent_config = AgentConfig( model=model_id, instructions="You are a helpful assistant who will use the web search tools to help with answering questions.\nOnly provide final answer in short without writing full sentences. Use web search", toolgroups=["builtin::websearch"], enable_session_persistence=True, ) agent = Agent(client, agent_config) session_id = agent.create_session(uuid.uuid4().hex) response = agent.create_turn( messages=[ { "role": "user", "content": "latest news about llama stack", } ], session_id=session_id, stream=False, ) pprint(response) ``` Output: ``` Turn( │ input_messages=[UserMessage(content='latest news about llama stack', role='user', context=None)], │ output_message=CompletionMessage( │ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.", │ │ role='assistant', │ │ stop_reason='end_of_turn', │ │ tool_calls=[] │ ), │ session_id='77379546-4598-485a-b4f4-84e5da28c513', │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915243, tzinfo=TzInfo(-08:00)), │ steps=[ │ │ InferenceStep( │ │ │ api_model_response=CompletionMessage( │ │ │ │ content='', │ │ │ │ role='assistant', │ │ │ │ stop_reason='end_of_turn', │ │ │ │ tool_calls=[ │ │ │ │ │ ToolCall( │ │ │ │ │ │ arguments={'query': 'latest news llama stack'}, │ │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b', │ │ │ │ │ │ tool_name='brave_search' │ │ │ │ │ ) │ │ │ │ ] │ │ │ ), │ │ │ step_id='81c16bd3-eb00-4721-8edc-f386e07391a3', │ │ │ step_type='inference', │ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45', │ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 637149, tzinfo=TzInfo(-08:00)), │ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 43, 915831, tzinfo=TzInfo(-08:00)) │ │ ), │ │ ToolExecutionStep( │ │ │ step_id='4782d609-a62e-45f5-8d2a-25a43db46288', │ │ │ step_type='tool_execution', │ │ │ tool_calls=[ │ │ │ │ ToolCall( │ │ │ │ │ arguments={'query': 'latest news llama stack'}, │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b', │ │ │ │ │ tool_name='brave_search' │ │ │ │ ) │ │ │ ], │ │ │ tool_responses=[ │ │ │ │ ToolResponse( │ │ │ │ │ call_id='84c0fa10-e24a-4f91-a9ff-415a9ec0bb0b', │ │ │ │ │ content='{"query": "latest news llama stack", "top_k": [{"title": "Llama 3.2: Revol. ....... Hacker News.", "score": 0.6186197, "raw_content": null}]}', │ │ │ │ │ tool_name='brave_search', │ │ │ │ │ metadata=None │ │ │ │ ) │ │ │ ], │ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45', │ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 272176, tzinfo=TzInfo(-08:00)), │ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 44, 640743, tzinfo=TzInfo(-08:00)) │ │ ), │ │ InferenceStep( │ │ │ api_model_response=CompletionMessage( │ │ │ │ content="The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.", │ │ │ │ role='assistant', │ │ │ │ stop_reason='end_of_turn', │ │ │ │ tool_calls=[] │ │ │ ), │ │ │ step_id='37994419-5da3-4e84-a010-8d9b85366262', │ │ │ step_type='inference', │ │ │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45', │ │ │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 961275, tzinfo=TzInfo(-08:00)), │ │ │ started_at=datetime.datetime(2025, 2, 27, 11, 2, 46, 273168, tzinfo=TzInfo(-08:00)) │ │ ) │ ], │ turn_id='2c6b5273-4b16-404f-bed2-c0025fd63b45', │ completed_at=datetime.datetime(2025, 2, 27, 11, 2, 48, 962318, tzinfo=TzInfo(-08:00)), │ output_attachments=[] ) ``` ## Check for Telemetry ```python agent_logs = [] for span in client.telemetry.query_spans( attribute_filters=[ {"key": "session_id", "op": "eq", "value": session_id}, ], attributes_to_return=['input', 'output'], ): agent_logs.append(span.attributes) pprint(json.loads(agent_logs[-1]['output'])) ``` ``` { │ 'content': "The latest news about Llama Stack is that Meta has released Llama 3.2, which includes small and medium-sized vision LLMs (11B and 90B) and lightweight, text-only models (1B and 3B) that fit onto select edge and mobile devices. Additionally, Llama Stack distributions have been released to simplify the way developers work with Llama models in different environments. However, a critical vulnerability has been discovered in Meta's Llama-Stack, which puts AI applications at risk.", │ 'tool_calls': [] } ``` |
||
---|---|---|
.github | ||
distributions | ||
docs | ||
llama_stack | ||
rfcs | ||
tests/client-sdk | ||
.gitignore | ||
.gitmodules | ||
.pre-commit-config.yaml | ||
.python-version | ||
.readthedocs.yaml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
MANIFEST.in | ||
pyproject.toml | ||
README.md | ||
requirements.txt | ||
SECURITY.md | ||
uv.lock |
Llama Stack
Quick Start | Documentation | Colab Notebook
Llama Stack standardizes the core building blocks that simplify AI application development. It codifies best practices across the Llama ecosystem. More specifically, it provides
- Unified API layer for Inference, RAG, Agents, Tools, Safety, Evals, and Telemetry.
- Plugin architecture to support the rich ecosystem of different API implementations in various environments, including local development, on-premises, cloud, and mobile.
- Prepackaged verified distributions which offer a one-stop solution for developers to get started quickly and reliably in any environment.
- Multiple developer interfaces like CLI and SDKs for Python, Typescript, iOS, and Android.
- Standalone applications as examples for how to build production-grade AI applications with Llama Stack.
Llama Stack Benefits
- Flexible Options: Developers can choose their preferred infrastructure without changing APIs and enjoy flexible deployment choices.
- Consistent Experience: With its unified APIs, Llama Stack makes it easier to build, test, and deploy AI applications with consistent application behavior.
- Robust Ecosystem: Llama Stack is already integrated with distribution partners (cloud providers, hardware vendors, and AI-focused companies) that offer tailored infrastructure, software, and services for deploying Llama models.
By reducing friction and complexity, Llama Stack empowers developers to focus on what they do best: building transformative generative AI applications.
API Providers
Here is a list of the various API providers and available distributions that can help developers get started easily with Llama Stack.
API Provider Builder | Environments | Agents | Inference | Memory | Safety | Telemetry |
---|---|---|---|---|---|---|
Meta Reference | Single Node | ✅ | ✅ | ✅ | ✅ | ✅ |
SambaNova | Hosted | ✅ | ||||
Cerebras | Hosted | ✅ | ||||
Fireworks | Hosted | ✅ | ✅ | ✅ | ||
AWS Bedrock | Hosted | ✅ | ✅ | |||
Together | Hosted | ✅ | ✅ | ✅ | ||
Groq | Hosted | ✅ | ||||
Ollama | Single Node | ✅ | ||||
TGI | Hosted and Single Node | ✅ | ||||
NVIDIA NIM | Hosted and Single Node | ✅ | ||||
Chroma | Single Node | ✅ | ||||
PG Vector | Single Node | ✅ | ||||
PyTorch ExecuTorch | On-device iOS | ✅ | ✅ | |||
vLLM | Hosted and Single Node | ✅ |
Distributions
A Llama Stack Distribution (or "distro") is a pre-configured bundle of provider implementations for each API component. Distributions make it easy to get started with a specific deployment scenario - you can begin with a local development setup (eg. ollama) and seamlessly transition to production (eg. Fireworks) without changing your application code. Here are some of the distributions we support:
Distribution | Llama Stack Docker | Start This Distribution |
---|---|---|
Meta Reference | llamastack/distribution-meta-reference-gpu | Guide |
Meta Reference Quantized | llamastack/distribution-meta-reference-quantized-gpu | Guide |
SambaNova | llamastack/distribution-sambanova | Guide |
Cerebras | llamastack/distribution-cerebras | Guide |
Ollama | llamastack/distribution-ollama | Guide |
TGI | llamastack/distribution-tgi | Guide |
Together | llamastack/distribution-together | Guide |
Fireworks | llamastack/distribution-fireworks | Guide |
vLLM | llamastack/distribution-remote-vllm | Guide |
Installation
You have two ways to install this repository:
-
Install as a package: You can install the repository directly from PyPI by running the following command:
pip install llama-stack
-
Install from source: If you prefer to install from the source code, we recommend using uv. Then, run the following commands:
git clone git@github.com:meta-llama/llama-stack.git cd llama-stack uv sync uv pip install -e .
Documentation
Please checkout our Documentation page for more details.
- CLI references
- llama (server-side) CLI Reference: Guide for using the
llama
CLI to work with Llama models (download, study prompts), and building/starting a Llama Stack distribution. - llama (client-side) CLI Reference: Guide for using the
llama-stack-client
CLI, which allows you to query information about the distribution.
- llama (server-side) CLI Reference: Guide for using the
- Getting Started
- Quick guide to start a Llama Stack server.
- Jupyter notebook to walk-through how to use simple text and vision inference llama_stack_client APIs
- The complete Llama Stack lesson Colab notebook of the new Llama 3.2 course on Deeplearning.ai.
- A Zero-to-Hero Guide that guide you through all the key components of llama stack with code samples.
- Contributing
- Adding a new API Provider to walk-through how to add a new API provider.
Llama Stack Client SDKs
Language | Client SDK | Package |
---|---|---|
Python | llama-stack-client-python | |
Swift | llama-stack-client-swift | |
Typescript | llama-stack-client-typescript | |
Kotlin | llama-stack-client-kotlin |
Check out our client SDKs for connecting to a Llama Stack server in your preferred language, you can choose from python, typescript, swift, and kotlin programming languages to quickly build your applications.
You can find more example scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo.