llama-stack-mirror/llama_stack/apis/agents/openai_responses.py
2025-07-02 11:34:34 -07:00

805 lines
28 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
from llama_stack.apis.vector_io import SearchRankingOptions as FileSearchRankingOptions
from llama_stack.schema_utils import json_schema_type, register_schema
# NOTE(ashwin): this file is literally a copy of the OpenAI responses API schema. We should probably
# take their YAML and generate this file automatically. Their YAML is available.
@json_schema_type
class OpenAIResponseError(BaseModel):
"""Error details for failed OpenAI response requests.
:param code: Error code identifying the type of failure
:param message: Human-readable error message describing the failure
"""
code: str
message: str
@json_schema_type
class OpenAIResponseInputMessageContentText(BaseModel):
"""Text content for input messages in OpenAI response format.
:param text: The text content of the input message
:param type: Content type identifier, always "input_text"
"""
text: str
type: Literal["input_text"] = "input_text"
@json_schema_type
class OpenAIResponseInputMessageContentImage(BaseModel):
"""Image content for input messages in OpenAI response format.
:param detail: Level of detail for image processing, can be "low", "high", or "auto"
:param type: Content type identifier, always "input_image"
:param image_url: (Optional) URL of the image content
"""
detail: Literal["low"] | Literal["high"] | Literal["auto"] = "auto"
type: Literal["input_image"] = "input_image"
# TODO: handle file_id
image_url: str | None = None
# TODO: handle file content types
OpenAIResponseInputMessageContent = Annotated[
OpenAIResponseInputMessageContentText | OpenAIResponseInputMessageContentImage,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputMessageContent, name="OpenAIResponseInputMessageContent")
@json_schema_type
class OpenAIResponseAnnotationFileCitation(BaseModel):
"""File citation annotation for referencing specific files in response content.
:param type: Annotation type identifier, always "file_citation"
:param file_id: Unique identifier of the referenced file
:param filename: Name of the referenced file
:param index: Position index of the citation within the content
"""
type: Literal["file_citation"] = "file_citation"
file_id: str
filename: str
index: int
@json_schema_type
class OpenAIResponseAnnotationCitation(BaseModel):
"""URL citation annotation for referencing external web resources.
:param type: Annotation type identifier, always "url_citation"
:param end_index: End position of the citation span in the content
:param start_index: Start position of the citation span in the content
:param title: Title of the referenced web resource
:param url: URL of the referenced web resource
"""
type: Literal["url_citation"] = "url_citation"
end_index: int
start_index: int
title: str
url: str
@json_schema_type
class OpenAIResponseAnnotationContainerFileCitation(BaseModel):
type: Literal["container_file_citation"] = "container_file_citation"
container_id: str
end_index: int
file_id: str
filename: str
start_index: int
@json_schema_type
class OpenAIResponseAnnotationFilePath(BaseModel):
type: Literal["file_path"] = "file_path"
file_id: str
index: int
OpenAIResponseAnnotations = Annotated[
OpenAIResponseAnnotationFileCitation
| OpenAIResponseAnnotationCitation
| OpenAIResponseAnnotationContainerFileCitation
| OpenAIResponseAnnotationFilePath,
Field(discriminator="type"),
]
register_schema(OpenAIResponseAnnotations, name="OpenAIResponseAnnotations")
@json_schema_type
class OpenAIResponseOutputMessageContentOutputText(BaseModel):
text: str
type: Literal["output_text"] = "output_text"
annotations: list[OpenAIResponseAnnotations] = Field(default_factory=list)
OpenAIResponseOutputMessageContent = Annotated[
OpenAIResponseOutputMessageContentOutputText,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutputMessageContent, name="OpenAIResponseOutputMessageContent")
@json_schema_type
class OpenAIResponseMessage(BaseModel):
"""
Corresponds to the various Message types in the Responses API.
They are all under one type because the Responses API gives them all
the same "type" value, and there is no way to tell them apart in certain
scenarios.
"""
content: str | list[OpenAIResponseInputMessageContent] | list[OpenAIResponseOutputMessageContent]
role: Literal["system"] | Literal["developer"] | Literal["user"] | Literal["assistant"]
type: Literal["message"] = "message"
# The fields below are not used in all scenarios, but are required in others.
id: str | None = None
status: str | None = None
@json_schema_type
class OpenAIResponseOutputMessageWebSearchToolCall(BaseModel):
"""Web search tool call output message for OpenAI responses.
:param id: Unique identifier for this tool call
:param status: Current status of the web search operation
:param type: Tool call type identifier, always "web_search_call"
"""
id: str
status: str
type: Literal["web_search_call"] = "web_search_call"
@json_schema_type
class OpenAIResponseOutputMessageFileSearchToolCall(BaseModel):
"""File search tool call output message for OpenAI responses.
:param id: Unique identifier for this tool call
:param queries: List of search queries executed
:param status: Current status of the file search operation
:param type: Tool call type identifier, always "file_search_call"
:param results: (Optional) Search results returned by the file search operation
"""
id: str
queries: list[str]
status: str
type: Literal["file_search_call"] = "file_search_call"
results: list[dict[str, Any]] | None = None
@json_schema_type
class OpenAIResponseOutputMessageFunctionToolCall(BaseModel):
"""Function tool call output message for OpenAI responses.
:param call_id: Unique identifier for the function call
:param name: Name of the function being called
:param arguments: JSON string containing the function arguments
:param type: Tool call type identifier, always "function_call"
:param id: (Optional) Additional identifier for the tool call
:param status: (Optional) Current status of the function call execution
"""
call_id: str
name: str
arguments: str
type: Literal["function_call"] = "function_call"
id: str | None = None
status: str | None = None
@json_schema_type
class OpenAIResponseOutputMessageMCPCall(BaseModel):
"""Model Context Protocol (MCP) call output message for OpenAI responses.
:param id: Unique identifier for this MCP call
:param type: Tool call type identifier, always "mcp_call"
:param arguments: JSON string containing the MCP call arguments
:param name: Name of the MCP method being called
:param server_label: Label identifying the MCP server handling the call
:param error: (Optional) Error message if the MCP call failed
:param output: (Optional) Output result from the successful MCP call
"""
id: str
type: Literal["mcp_call"] = "mcp_call"
arguments: str
name: str
server_label: str
error: str | None = None
output: str | None = None
class MCPListToolsTool(BaseModel):
"""Tool definition returned by MCP list tools operation.
:param input_schema: JSON schema defining the tool's input parameters
:param name: Name of the tool
:param description: (Optional) Description of what the tool does
"""
input_schema: dict[str, Any]
name: str
description: str | None = None
@json_schema_type
class OpenAIResponseOutputMessageMCPListTools(BaseModel):
"""MCP list tools output message containing available tools from an MCP server.
:param id: Unique identifier for this MCP list tools operation
:param type: Tool call type identifier, always "mcp_list_tools"
:param server_label: Label identifying the MCP server providing the tools
:param tools: List of available tools provided by the MCP server
"""
id: str
type: Literal["mcp_list_tools"] = "mcp_list_tools"
server_label: str
tools: list[MCPListToolsTool]
OpenAIResponseOutput = Annotated[
OpenAIResponseMessage
| OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseOutputMessageMCPCall
| OpenAIResponseOutputMessageMCPListTools,
Field(discriminator="type"),
]
register_schema(OpenAIResponseOutput, name="OpenAIResponseOutput")
# This has to be a TypedDict because we need a "schema" field and our strong
# typing code in the schema generator doesn't support Pydantic aliases. That also
# means we can't use a discriminator field here, because TypedDicts don't support
# default values which the strong typing code requires for discriminators.
class OpenAIResponseTextFormat(TypedDict, total=False):
"""Configuration for Responses API text format.
:param type: Must be "text", "json_schema", or "json_object" to identify the format type
:param name: The name of the response format. Only used for json_schema.
:param schema: The JSON schema the response should conform to. In a Python SDK, this is often a `pydantic` model. Only used for json_schema.
:param description: (Optional) A description of the response format. Only used for json_schema.
:param strict: (Optional) Whether to strictly enforce the JSON schema. If true, the response must match the schema exactly. Only used for json_schema.
"""
type: Literal["text"] | Literal["json_schema"] | Literal["json_object"]
name: str | None
schema: dict[str, Any] | None
description: str | None
strict: bool | None
@json_schema_type
class OpenAIResponseText(BaseModel):
"""Text response configuration for OpenAI responses.
:param format: (Optional) Text format configuration specifying output format requirements
"""
format: OpenAIResponseTextFormat | None = None
@json_schema_type
class OpenAIResponseObject(BaseModel):
"""Complete OpenAI response object containing generation results and metadata.
:param created_at: Unix timestamp when the response was created
:param error: (Optional) Error details if the response generation failed
:param id: Unique identifier for this response
:param model: Model identifier used for generation
:param object: Object type identifier, always "response"
:param output: List of generated output items (messages, tool calls, etc.)
:param parallel_tool_calls: Whether tool calls can be executed in parallel
:param previous_response_id: (Optional) ID of the previous response in a conversation
:param status: Current status of the response generation
:param temperature: (Optional) Sampling temperature used for generation
:param text: Text formatting configuration for the response
:param top_p: (Optional) Nucleus sampling parameter used for generation
:param truncation: (Optional) Truncation strategy applied to the response
:param user: (Optional) User identifier associated with the request
"""
created_at: int
error: OpenAIResponseError | None = None
id: str
model: str
object: Literal["response"] = "response"
output: list[OpenAIResponseOutput]
parallel_tool_calls: bool = False
previous_response_id: str | None = None
status: str
temperature: float | None = None
# Default to text format to avoid breaking the loading of old responses
# before the field was added. New responses will have this set always.
text: OpenAIResponseText = OpenAIResponseText(format=OpenAIResponseTextFormat(type="text"))
top_p: float | None = None
truncation: str | None = None
user: str | None = None
@json_schema_type
class OpenAIDeleteResponseObject(BaseModel):
"""Response object confirming deletion of an OpenAI response.
:param id: Unique identifier of the deleted response
:param object: Object type identifier, always "response"
:param deleted: Deletion confirmation flag, always True
"""
id: str
object: Literal["response"] = "response"
deleted: bool = True
@json_schema_type
class OpenAIResponseObjectStreamResponseCreated(BaseModel):
"""Streaming event indicating a new response has been created.
:param response: The newly created response object
:param type: Event type identifier, always "response.created"
"""
response: OpenAIResponseObject
type: Literal["response.created"] = "response.created"
@json_schema_type
class OpenAIResponseObjectStreamResponseCompleted(BaseModel):
"""Streaming event indicating a response has been completed.
:param response: The completed response object
:param type: Event type identifier, always "response.completed"
"""
response: OpenAIResponseObject
type: Literal["response.completed"] = "response.completed"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputItemAdded(BaseModel):
"""Streaming event for when a new output item is added to the response.
:param response_id: Unique identifier of the response containing this output
:param item: The output item that was added (message, tool call, etc.)
:param output_index: Index position of this item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_item.added"
"""
response_id: str
item: OpenAIResponseOutput
output_index: int
sequence_number: int
type: Literal["response.output_item.added"] = "response.output_item.added"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputItemDone(BaseModel):
"""Streaming event for when an output item is completed.
:param response_id: Unique identifier of the response containing this output
:param item: The completed output item (message, tool call, etc.)
:param output_index: Index position of this item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_item.done"
"""
response_id: str
item: OpenAIResponseOutput
output_index: int
sequence_number: int
type: Literal["response.output_item.done"] = "response.output_item.done"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDelta(BaseModel):
"""Streaming event for incremental text content updates.
:param content_index: Index position within the text content
:param delta: Incremental text content being added
:param item_id: Unique identifier of the output item being updated
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_text.delta"
"""
content_index: int
delta: str
item_id: str
output_index: int
sequence_number: int
type: Literal["response.output_text.delta"] = "response.output_text.delta"
@json_schema_type
class OpenAIResponseObjectStreamResponseOutputTextDone(BaseModel):
"""Streaming event for when text output is completed.
:param content_index: Index position within the text content
:param text: Final complete text content of the output item
:param item_id: Unique identifier of the completed output item
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.output_text.done"
"""
content_index: int
text: str # final text of the output item
item_id: str
output_index: int
sequence_number: int
type: Literal["response.output_text.done"] = "response.output_text.done"
@json_schema_type
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta(BaseModel):
"""Streaming event for incremental function call argument updates.
:param delta: Incremental function call arguments being added
:param item_id: Unique identifier of the function call being updated
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.function_call_arguments.delta"
"""
delta: str
item_id: str
output_index: int
sequence_number: int
type: Literal["response.function_call_arguments.delta"] = "response.function_call_arguments.delta"
@json_schema_type
class OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone(BaseModel):
"""Streaming event for when function call arguments are completed.
:param arguments: Final complete arguments JSON string for the function call
:param item_id: Unique identifier of the completed function call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.function_call_arguments.done"
"""
arguments: str # final arguments of the function call
item_id: str
output_index: int
sequence_number: int
type: Literal["response.function_call_arguments.done"] = "response.function_call_arguments.done"
@json_schema_type
class OpenAIResponseObjectStreamResponseWebSearchCallInProgress(BaseModel):
"""Streaming event for web search calls in progress.
:param item_id: Unique identifier of the web search call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.web_search_call.in_progress"
"""
item_id: str
output_index: int
sequence_number: int
type: Literal["response.web_search_call.in_progress"] = "response.web_search_call.in_progress"
@json_schema_type
class OpenAIResponseObjectStreamResponseWebSearchCallSearching(BaseModel):
item_id: str
output_index: int
sequence_number: int
type: Literal["response.web_search_call.searching"] = "response.web_search_call.searching"
@json_schema_type
class OpenAIResponseObjectStreamResponseWebSearchCallCompleted(BaseModel):
"""Streaming event for completed web search calls.
:param item_id: Unique identifier of the completed web search call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.web_search_call.completed"
"""
item_id: str
output_index: int
sequence_number: int
type: Literal["response.web_search_call.completed"] = "response.web_search_call.completed"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpListToolsInProgress(BaseModel):
sequence_number: int
type: Literal["response.mcp_list_tools.in_progress"] = "response.mcp_list_tools.in_progress"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpListToolsFailed(BaseModel):
sequence_number: int
type: Literal["response.mcp_list_tools.failed"] = "response.mcp_list_tools.failed"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpListToolsCompleted(BaseModel):
sequence_number: int
type: Literal["response.mcp_list_tools.completed"] = "response.mcp_list_tools.completed"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta(BaseModel):
delta: str
item_id: str
output_index: int
sequence_number: int
type: Literal["response.mcp_call.arguments.delta"] = "response.mcp_call.arguments.delta"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallArgumentsDone(BaseModel):
arguments: str # final arguments of the MCP call
item_id: str
output_index: int
sequence_number: int
type: Literal["response.mcp_call.arguments.done"] = "response.mcp_call.arguments.done"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallInProgress(BaseModel):
"""Streaming event for MCP calls in progress.
:param item_id: Unique identifier of the MCP call
:param output_index: Index position of the item in the output list
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.in_progress"
"""
item_id: str
output_index: int
sequence_number: int
type: Literal["response.mcp_call.in_progress"] = "response.mcp_call.in_progress"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallFailed(BaseModel):
"""Streaming event for failed MCP calls.
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.failed"
"""
sequence_number: int
type: Literal["response.mcp_call.failed"] = "response.mcp_call.failed"
@json_schema_type
class OpenAIResponseObjectStreamResponseMcpCallCompleted(BaseModel):
"""Streaming event for completed MCP calls.
:param sequence_number: Sequential number for ordering streaming events
:param type: Event type identifier, always "response.mcp_call.completed"
"""
sequence_number: int
type: Literal["response.mcp_call.completed"] = "response.mcp_call.completed"
OpenAIResponseObjectStream = Annotated[
OpenAIResponseObjectStreamResponseCreated
| OpenAIResponseObjectStreamResponseOutputItemAdded
| OpenAIResponseObjectStreamResponseOutputItemDone
| OpenAIResponseObjectStreamResponseOutputTextDelta
| OpenAIResponseObjectStreamResponseOutputTextDone
| OpenAIResponseObjectStreamResponseFunctionCallArgumentsDelta
| OpenAIResponseObjectStreamResponseFunctionCallArgumentsDone
| OpenAIResponseObjectStreamResponseWebSearchCallInProgress
| OpenAIResponseObjectStreamResponseWebSearchCallSearching
| OpenAIResponseObjectStreamResponseWebSearchCallCompleted
| OpenAIResponseObjectStreamResponseMcpListToolsInProgress
| OpenAIResponseObjectStreamResponseMcpListToolsFailed
| OpenAIResponseObjectStreamResponseMcpListToolsCompleted
| OpenAIResponseObjectStreamResponseMcpCallArgumentsDelta
| OpenAIResponseObjectStreamResponseMcpCallArgumentsDone
| OpenAIResponseObjectStreamResponseMcpCallInProgress
| OpenAIResponseObjectStreamResponseMcpCallFailed
| OpenAIResponseObjectStreamResponseMcpCallCompleted
| OpenAIResponseObjectStreamResponseCompleted,
Field(discriminator="type"),
]
register_schema(OpenAIResponseObjectStream, name="OpenAIResponseObjectStream")
@json_schema_type
class OpenAIResponseInputFunctionToolCallOutput(BaseModel):
"""
This represents the output of a function call that gets passed back to the model.
"""
call_id: str
output: str
type: Literal["function_call_output"] = "function_call_output"
id: str | None = None
status: str | None = None
OpenAIResponseInput = Annotated[
# Responses API allows output messages to be passed in as input
OpenAIResponseOutputMessageWebSearchToolCall
| OpenAIResponseOutputMessageFileSearchToolCall
| OpenAIResponseOutputMessageFunctionToolCall
| OpenAIResponseInputFunctionToolCallOutput
|
# Fallback to the generic message type as a last resort
OpenAIResponseMessage,
Field(union_mode="left_to_right"),
]
register_schema(OpenAIResponseInput, name="OpenAIResponseInput")
# Must match type Literals of OpenAIResponseInputToolWebSearch below
WebSearchToolTypes = ["web_search", "web_search_preview", "web_search_preview_2025_03_11"]
@json_schema_type
class OpenAIResponseInputToolWebSearch(BaseModel):
"""Web search tool configuration for OpenAI response inputs.
:param type: Web search tool type variant to use
:param search_context_size: (Optional) Size of search context, must be "low", "medium", or "high"
"""
# Must match values of WebSearchToolTypes above
type: Literal["web_search"] | Literal["web_search_preview"] | Literal["web_search_preview_2025_03_11"] = (
"web_search"
)
# TODO: actually use search_context_size somewhere...
search_context_size: str | None = Field(default="medium", pattern="^low|medium|high$")
# TODO: add user_location
@json_schema_type
class OpenAIResponseInputToolFunction(BaseModel):
"""Function tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "function"
:param name: Name of the function that can be called
:param description: (Optional) Description of what the function does
:param parameters: (Optional) JSON schema defining the function's parameters
:param strict: (Optional) Whether to enforce strict parameter validation
"""
type: Literal["function"] = "function"
name: str
description: str | None = None
parameters: dict[str, Any] | None
strict: bool | None = None
@json_schema_type
class OpenAIResponseInputToolFileSearch(BaseModel):
"""File search tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "file_search"
:param vector_store_ids: List of vector store identifiers to search within
:param filters: (Optional) Additional filters to apply to the search
:param max_num_results: (Optional) Maximum number of search results to return (1-50)
:param ranking_options: (Optional) Options for ranking and scoring search results
"""
type: Literal["file_search"] = "file_search"
vector_store_ids: list[str]
filters: dict[str, Any] | None = None
max_num_results: int | None = Field(default=10, ge=1, le=50)
ranking_options: FileSearchRankingOptions | None = None
class ApprovalFilter(BaseModel):
"""Filter configuration for MCP tool approval requirements.
:param always: (Optional) List of tool names that always require approval
:param never: (Optional) List of tool names that never require approval
"""
always: list[str] | None = None
never: list[str] | None = None
class AllowedToolsFilter(BaseModel):
"""Filter configuration for restricting which MCP tools can be used.
:param tool_names: (Optional) List of specific tool names that are allowed
"""
tool_names: list[str] | None = None
@json_schema_type
class OpenAIResponseInputToolMCP(BaseModel):
"""Model Context Protocol (MCP) tool configuration for OpenAI response inputs.
:param type: Tool type identifier, always "mcp"
:param server_label: Label to identify this MCP server
:param server_url: URL endpoint of the MCP server
:param headers: (Optional) HTTP headers to include when connecting to the server
:param require_approval: Approval requirement for tool calls ("always", "never", or filter)
:param allowed_tools: (Optional) Restriction on which tools can be used from this server
"""
type: Literal["mcp"] = "mcp"
server_label: str
server_url: str
headers: dict[str, Any] | None = None
require_approval: Literal["always"] | Literal["never"] | ApprovalFilter = "never"
allowed_tools: list[str] | AllowedToolsFilter | None = None
OpenAIResponseInputTool = Annotated[
OpenAIResponseInputToolWebSearch
| OpenAIResponseInputToolFileSearch
| OpenAIResponseInputToolFunction
| OpenAIResponseInputToolMCP,
Field(discriminator="type"),
]
register_schema(OpenAIResponseInputTool, name="OpenAIResponseInputTool")
class ListOpenAIResponseInputItem(BaseModel):
"""List container for OpenAI response input items.
:param data: List of input items
:param object: Object type identifier, always "list"
"""
data: list[OpenAIResponseInput]
object: Literal["list"] = "list"
@json_schema_type
class OpenAIResponseObjectWithInput(OpenAIResponseObject):
"""OpenAI response object extended with input context information.
:param input: List of input items that led to this response
"""
input: list[OpenAIResponseInput]
@json_schema_type
class ListOpenAIResponseObject(BaseModel):
"""Paginated list of OpenAI response objects with navigation metadata.
:param data: List of response objects with their input context
:param has_more: Whether there are more results available beyond this page
:param first_id: Identifier of the first item in this page
:param last_id: Identifier of the last item in this page
:param object: Object type identifier, always "list"
"""
data: list[OpenAIResponseObjectWithInput]
has_more: bool
first_id: str
last_id: str
object: Literal["list"] = "list"