mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 20:14:13 +00:00
# What does this PR do? update Groq inference provider to use OpenAIMixin for openai-compat endpoints changes on api.groq.com - - json_schema is now supported for specific models, see https://console.groq.com/docs/structured-outputs#supported-models - response_format with streaming is now supported for models that support response_format - groq no longer returns a 400 error if tools are provided and tool_choice is not "required" ## Test Plan ``` $ GROQ_API_KEY=... uv run llama stack build --image-type venv --providers inference=remote::groq --run ... $ LLAMA_STACK_CONFIG=http://localhost:8321 uv run --group test pytest -v -ra --text-model groq/llama-3.3-70b-versatile tests/integration/inference/test_openai_completion.py -k 'not store' ... SKIPPED [3] tests/integration/inference/test_openai_completion.py:44: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support OpenAI completions. SKIPPED [3] tests/integration/inference/test_openai_completion.py:94: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support vllm extra_body parameters. SKIPPED [4] tests/integration/inference/test_openai_completion.py:73: Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support n param. SKIPPED [1] tests/integration/inference/test_openai_completion.py💯 Model groq/llama-3.3-70b-versatile hosted by remote::groq doesn't support chat completion calls with base64 encoded files. ======================= 8 passed, 11 skipped, 8 deselected, 2 warnings in 5.13s ======================== ``` --------- Co-authored-by: raghotham <rsm@meta.com>
89 lines
3.9 KiB
Python
89 lines
3.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import json
|
|
from unittest.mock import MagicMock
|
|
|
|
from llama_stack.core.request_headers import request_provider_data_context
|
|
from llama_stack.providers.remote.inference.groq.config import GroqConfig
|
|
from llama_stack.providers.remote.inference.groq.groq import GroqInferenceAdapter
|
|
from llama_stack.providers.remote.inference.llama_openai_compat.config import LlamaCompatConfig
|
|
from llama_stack.providers.remote.inference.llama_openai_compat.llama import LlamaCompatInferenceAdapter
|
|
from llama_stack.providers.remote.inference.openai.config import OpenAIConfig
|
|
from llama_stack.providers.remote.inference.openai.openai import OpenAIInferenceAdapter
|
|
from llama_stack.providers.remote.inference.together.config import TogetherImplConfig
|
|
from llama_stack.providers.remote.inference.together.together import TogetherInferenceAdapter
|
|
|
|
|
|
def test_groq_provider_openai_client_caching():
|
|
"""Ensure the Groq provider does not cache api keys across client requests"""
|
|
|
|
config = GroqConfig()
|
|
inference_adapter = GroqInferenceAdapter(config)
|
|
|
|
inference_adapter.__provider_spec__ = MagicMock()
|
|
inference_adapter.__provider_spec__.provider_data_validator = (
|
|
"llama_stack.providers.remote.inference.groq.config.GroqProviderDataValidator"
|
|
)
|
|
|
|
for api_key in ["test1", "test2"]:
|
|
with request_provider_data_context(
|
|
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
|
):
|
|
assert inference_adapter.client.api_key == api_key
|
|
|
|
|
|
def test_openai_provider_openai_client_caching():
|
|
"""Ensure the OpenAI provider does not cache api keys across client requests"""
|
|
|
|
config = OpenAIConfig()
|
|
inference_adapter = OpenAIInferenceAdapter(config)
|
|
|
|
inference_adapter.__provider_spec__ = MagicMock()
|
|
inference_adapter.__provider_spec__.provider_data_validator = (
|
|
"llama_stack.providers.remote.inference.openai.config.OpenAIProviderDataValidator"
|
|
)
|
|
|
|
for api_key in ["test1", "test2"]:
|
|
with request_provider_data_context(
|
|
{"x-llamastack-provider-data": json.dumps({inference_adapter.provider_data_api_key_field: api_key})}
|
|
):
|
|
openai_client = inference_adapter.client
|
|
assert openai_client.api_key == api_key
|
|
|
|
|
|
def test_together_provider_openai_client_caching():
|
|
"""Ensure the Together provider does not cache api keys across client requests"""
|
|
|
|
config = TogetherImplConfig()
|
|
inference_adapter = TogetherInferenceAdapter(config)
|
|
|
|
inference_adapter.__provider_spec__ = MagicMock()
|
|
inference_adapter.__provider_spec__.provider_data_validator = (
|
|
"llama_stack.providers.remote.inference.together.TogetherProviderDataValidator"
|
|
)
|
|
|
|
for api_key in ["test1", "test2"]:
|
|
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"together_api_key": api_key})}):
|
|
together_client = inference_adapter._get_client()
|
|
assert together_client.client.api_key == api_key
|
|
openai_client = inference_adapter._get_openai_client()
|
|
assert openai_client.api_key == api_key
|
|
|
|
|
|
def test_llama_compat_provider_openai_client_caching():
|
|
"""Ensure the LlamaCompat provider does not cache api keys across client requests"""
|
|
config = LlamaCompatConfig()
|
|
inference_adapter = LlamaCompatInferenceAdapter(config)
|
|
|
|
inference_adapter.__provider_spec__ = MagicMock()
|
|
inference_adapter.__provider_spec__.provider_data_validator = (
|
|
"llama_stack.providers.remote.inference.llama_openai_compat.config.LlamaProviderDataValidator"
|
|
)
|
|
|
|
for api_key in ["test1", "test2"]:
|
|
with request_provider_data_context({"x-llamastack-provider-data": json.dumps({"llama_api_key": api_key})}):
|
|
assert inference_adapter.client.api_key == api_key
|