mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 04:04:14 +00:00
# What does this PR do? the @required_args decorator in openai-python is masking the async nature of the {AsyncCompletions,chat.AsyncCompletions}.create method. see https://github.com/openai/openai-python/issues/996 this means two things - 0. we cannot use iscoroutine in the recorder to detect async vs non 1. our mocks are inappropriately introducing identifiable async for (0), we update the iscoroutine check w/ detection of /v1/models, which is the only non-async function we mock & record. for (1), we could leave everything as is and assume (0) will catch errors. to be defensive, we update the unit tests to mock below create methods, allowing the true openai-python create() methods to be tested.
498 lines
19 KiB
Python
498 lines
19 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from __future__ import annotations # for forward references
|
|
|
|
import hashlib
|
|
import json
|
|
import os
|
|
from collections.abc import Generator
|
|
from contextlib import contextmanager
|
|
from enum import StrEnum
|
|
from pathlib import Path
|
|
from typing import Any, Literal, cast
|
|
|
|
from openai import NOT_GIVEN
|
|
|
|
from llama_stack.log import get_logger
|
|
|
|
logger = get_logger(__name__, category="testing")
|
|
|
|
# Global state for the recording system
|
|
_current_mode: str | None = None
|
|
_current_storage: ResponseStorage | None = None
|
|
_original_methods: dict[str, Any] = {}
|
|
|
|
from openai.types.completion_choice import CompletionChoice
|
|
|
|
# update the "finish_reason" field, since its type definition is wrong (no None is accepted)
|
|
CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None
|
|
CompletionChoice.model_rebuild()
|
|
|
|
REPO_ROOT = Path(__file__).parent.parent.parent
|
|
DEFAULT_STORAGE_DIR = REPO_ROOT / "tests/integration/recordings"
|
|
|
|
|
|
class InferenceMode(StrEnum):
|
|
LIVE = "live"
|
|
RECORD = "record"
|
|
REPLAY = "replay"
|
|
|
|
|
|
def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
|
|
"""Create a normalized hash of the request for consistent matching."""
|
|
# Extract just the endpoint path
|
|
from urllib.parse import urlparse
|
|
|
|
parsed = urlparse(url)
|
|
normalized = {"method": method.upper(), "endpoint": parsed.path, "body": body}
|
|
|
|
# Create hash - sort_keys=True ensures deterministic ordering
|
|
normalized_json = json.dumps(normalized, sort_keys=True)
|
|
return hashlib.sha256(normalized_json.encode()).hexdigest()
|
|
|
|
|
|
def get_inference_mode() -> InferenceMode:
|
|
return InferenceMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
|
|
|
|
|
|
def setup_inference_recording():
|
|
"""
|
|
Returns a context manager that can be used to record or replay inference requests. This is to be used in tests
|
|
to increase their reliability and reduce reliance on expensive, external services.
|
|
|
|
Currently, this is only supported for OpenAI and Ollama clients. These should cover the vast majority of use cases.
|
|
|
|
Two environment variables are supported:
|
|
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Must be 'live', 'record', or 'replay'. Default is 'replay'.
|
|
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'.
|
|
|
|
The recordings are stored as JSON files.
|
|
"""
|
|
mode = get_inference_mode()
|
|
if mode == InferenceMode.LIVE:
|
|
return None
|
|
|
|
storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR)
|
|
return inference_recording(mode=mode, storage_dir=storage_dir)
|
|
|
|
|
|
def _serialize_response(response: Any) -> Any:
|
|
if hasattr(response, "model_dump"):
|
|
data = response.model_dump(mode="json")
|
|
return {
|
|
"__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}",
|
|
"__data__": data,
|
|
}
|
|
elif hasattr(response, "__dict__"):
|
|
return dict(response.__dict__)
|
|
else:
|
|
return response
|
|
|
|
|
|
def _deserialize_response(data: dict[str, Any]) -> Any:
|
|
# Check if this is a serialized Pydantic model with type information
|
|
if isinstance(data, dict) and "__type__" in data and "__data__" in data:
|
|
try:
|
|
# Import the original class and reconstruct the object
|
|
module_path, class_name = data["__type__"].rsplit(".", 1)
|
|
module = __import__(module_path, fromlist=[class_name])
|
|
cls = getattr(module, class_name)
|
|
|
|
if not hasattr(cls, "model_validate"):
|
|
raise ValueError(f"Pydantic class {cls} does not support model_validate?")
|
|
|
|
return cls.model_validate(data["__data__"])
|
|
except (ImportError, AttributeError, TypeError, ValueError) as e:
|
|
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_validate: {e}")
|
|
try:
|
|
return cls.model_construct(**data["__data__"])
|
|
except Exception as e:
|
|
logger.warning(f"Failed to deserialize object of type {data['__type__']} with model_construct: {e}")
|
|
return data["__data__"]
|
|
|
|
return data
|
|
|
|
|
|
class ResponseStorage:
|
|
"""Handles SQLite index + JSON file storage/retrieval for inference recordings."""
|
|
|
|
def __init__(self, test_dir: Path):
|
|
self.test_dir = test_dir
|
|
self.responses_dir = self.test_dir / "responses"
|
|
|
|
self._ensure_directories()
|
|
|
|
def _ensure_directories(self):
|
|
self.test_dir.mkdir(parents=True, exist_ok=True)
|
|
self.responses_dir.mkdir(exist_ok=True)
|
|
|
|
def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]):
|
|
"""Store a request/response pair."""
|
|
# Generate unique response filename
|
|
short_hash = request_hash[:12]
|
|
response_file = f"{short_hash}.json"
|
|
|
|
# Serialize response body if needed
|
|
serialized_response = dict(response)
|
|
if "body" in serialized_response:
|
|
if isinstance(serialized_response["body"], list):
|
|
# Handle streaming responses (list of chunks)
|
|
serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]]
|
|
else:
|
|
# Handle single response
|
|
serialized_response["body"] = _serialize_response(serialized_response["body"])
|
|
|
|
# If this is an Ollama /api/tags recording, include models digest in filename to distinguish variants
|
|
endpoint = request.get("endpoint")
|
|
if endpoint in ("/api/tags", "/v1/models"):
|
|
digest = _model_identifiers_digest(endpoint, response)
|
|
response_file = f"models-{short_hash}-{digest}.json"
|
|
|
|
response_path = self.responses_dir / response_file
|
|
|
|
# Save response to JSON file
|
|
with open(response_path, "w") as f:
|
|
json.dump({"request": request, "response": serialized_response}, f, indent=2)
|
|
f.write("\n")
|
|
f.flush()
|
|
|
|
def find_recording(self, request_hash: str) -> dict[str, Any] | None:
|
|
"""Find a recorded response by request hash."""
|
|
response_file = f"{request_hash[:12]}.json"
|
|
response_path = self.responses_dir / response_file
|
|
|
|
if not response_path.exists():
|
|
return None
|
|
|
|
return _recording_from_file(response_path)
|
|
|
|
def _model_list_responses(self, short_hash: str) -> list[dict[str, Any]]:
|
|
results: list[dict[str, Any]] = []
|
|
for path in self.responses_dir.glob(f"models-{short_hash}-*.json"):
|
|
data = _recording_from_file(path)
|
|
results.append(data)
|
|
return results
|
|
|
|
|
|
def _recording_from_file(response_path) -> dict[str, Any]:
|
|
with open(response_path) as f:
|
|
data = json.load(f)
|
|
|
|
# Deserialize response body if needed
|
|
if "response" in data and "body" in data["response"]:
|
|
if isinstance(data["response"]["body"], list):
|
|
# Handle streaming responses
|
|
data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]]
|
|
else:
|
|
# Handle single response
|
|
data["response"]["body"] = _deserialize_response(data["response"]["body"])
|
|
|
|
return cast(dict[str, Any], data)
|
|
|
|
|
|
def _model_identifiers_digest(endpoint: str, response: dict[str, Any]) -> str:
|
|
def _extract_model_identifiers():
|
|
"""Extract a stable set of identifiers for model-list endpoints.
|
|
|
|
Supported endpoints:
|
|
- '/api/tags' (Ollama): response body has 'models': [ { name/model/digest/id/... }, ... ]
|
|
- '/v1/models' (OpenAI): response body is: [ { id: ... }, ... ]
|
|
Returns a list of unique identifiers or None if structure doesn't match.
|
|
"""
|
|
items = response["body"]
|
|
idents = [m.model if endpoint == "/api/tags" else m.id for m in items]
|
|
return sorted(set(idents))
|
|
|
|
identifiers = _extract_model_identifiers()
|
|
return hashlib.sha256(("|".join(identifiers)).encode("utf-8")).hexdigest()[:8]
|
|
|
|
|
|
def _combine_model_list_responses(endpoint: str, records: list[dict[str, Any]]) -> dict[str, Any] | None:
|
|
"""Return a single, unioned recording for supported model-list endpoints."""
|
|
seen: dict[str, dict[str, Any]] = {}
|
|
for rec in records:
|
|
body = rec["response"]["body"]
|
|
if endpoint == "/v1/models":
|
|
for m in body:
|
|
key = m.id
|
|
seen[key] = m
|
|
elif endpoint == "/api/tags":
|
|
for m in body.models:
|
|
key = m.model
|
|
seen[key] = m
|
|
|
|
ordered = [seen[k] for k in sorted(seen.keys())]
|
|
canonical = records[0]
|
|
canonical_req = canonical.get("request", {})
|
|
if isinstance(canonical_req, dict):
|
|
canonical_req["endpoint"] = endpoint
|
|
body = ordered
|
|
if endpoint == "/api/tags":
|
|
from ollama import ListResponse
|
|
|
|
body = ListResponse(models=ordered)
|
|
return {"request": canonical_req, "response": {"body": body, "is_streaming": False}}
|
|
|
|
|
|
async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs):
|
|
global _current_mode, _current_storage
|
|
|
|
if _current_mode == InferenceMode.LIVE or _current_storage is None:
|
|
if endpoint == "/v1/models":
|
|
return original_method(self, *args, **kwargs)
|
|
else:
|
|
return await original_method(self, *args, **kwargs)
|
|
|
|
# Get base URL based on client type
|
|
if client_type == "openai":
|
|
base_url = str(self._client.base_url)
|
|
|
|
# the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out
|
|
kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN}
|
|
elif client_type == "ollama":
|
|
# Get base URL from the client (Ollama client uses host attribute)
|
|
base_url = getattr(self, "host", "http://localhost:11434")
|
|
if not base_url.startswith("http"):
|
|
base_url = f"http://{base_url}"
|
|
else:
|
|
raise ValueError(f"Unknown client type: {client_type}")
|
|
|
|
url = base_url.rstrip("/") + endpoint
|
|
method = "POST"
|
|
headers = {}
|
|
body = kwargs
|
|
|
|
request_hash = normalize_request(method, url, headers, body)
|
|
|
|
if _current_mode == InferenceMode.REPLAY:
|
|
# Special handling for model-list endpoints: return union of all responses
|
|
if endpoint in ("/api/tags", "/v1/models"):
|
|
records = _current_storage._model_list_responses(request_hash[:12])
|
|
recording = _combine_model_list_responses(endpoint, records)
|
|
else:
|
|
recording = _current_storage.find_recording(request_hash)
|
|
if recording:
|
|
response_body = recording["response"]["body"]
|
|
|
|
if recording["response"].get("is_streaming", False):
|
|
|
|
async def replay_stream():
|
|
for chunk in response_body:
|
|
yield chunk
|
|
|
|
return replay_stream()
|
|
else:
|
|
return response_body
|
|
else:
|
|
raise RuntimeError(
|
|
f"No recorded response found for request hash: {request_hash}\n"
|
|
f"Request: {method} {url} {body}\n"
|
|
f"Model: {body.get('model', 'unknown')}\n"
|
|
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
|
|
)
|
|
|
|
elif _current_mode == InferenceMode.RECORD:
|
|
if endpoint == "/v1/models":
|
|
response = original_method(self, *args, **kwargs)
|
|
else:
|
|
response = await original_method(self, *args, **kwargs)
|
|
|
|
# we want to store the result of the iterator, not the iterator itself
|
|
if endpoint == "/v1/models":
|
|
response = [m async for m in response]
|
|
|
|
request_data = {
|
|
"method": method,
|
|
"url": url,
|
|
"headers": headers,
|
|
"body": body,
|
|
"endpoint": endpoint,
|
|
"model": body.get("model", ""),
|
|
}
|
|
|
|
# Determine if this is a streaming request based on request parameters
|
|
is_streaming = body.get("stream", False)
|
|
|
|
if is_streaming:
|
|
# For streaming responses, we need to collect all chunks immediately before yielding
|
|
# This ensures the recording is saved even if the generator isn't fully consumed
|
|
chunks = []
|
|
async for chunk in response:
|
|
chunks.append(chunk)
|
|
|
|
# Store the recording immediately
|
|
response_data = {"body": chunks, "is_streaming": True}
|
|
_current_storage.store_recording(request_hash, request_data, response_data)
|
|
|
|
# Return a generator that replays the stored chunks
|
|
async def replay_recorded_stream():
|
|
for chunk in chunks:
|
|
yield chunk
|
|
|
|
return replay_recorded_stream()
|
|
else:
|
|
response_data = {"body": response, "is_streaming": False}
|
|
_current_storage.store_recording(request_hash, request_data, response_data)
|
|
return response
|
|
|
|
else:
|
|
raise AssertionError(f"Invalid mode: {_current_mode}")
|
|
|
|
|
|
def patch_inference_clients():
|
|
"""Install monkey patches for OpenAI client methods and Ollama AsyncClient methods."""
|
|
global _original_methods
|
|
|
|
from ollama import AsyncClient as OllamaAsyncClient
|
|
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
|
|
from openai.resources.completions import AsyncCompletions
|
|
from openai.resources.embeddings import AsyncEmbeddings
|
|
from openai.resources.models import AsyncModels
|
|
|
|
# Store original methods for both OpenAI and Ollama clients
|
|
_original_methods = {
|
|
"chat_completions_create": AsyncChatCompletions.create,
|
|
"completions_create": AsyncCompletions.create,
|
|
"embeddings_create": AsyncEmbeddings.create,
|
|
"models_list": AsyncModels.list,
|
|
"ollama_generate": OllamaAsyncClient.generate,
|
|
"ollama_chat": OllamaAsyncClient.chat,
|
|
"ollama_embed": OllamaAsyncClient.embed,
|
|
"ollama_ps": OllamaAsyncClient.ps,
|
|
"ollama_pull": OllamaAsyncClient.pull,
|
|
"ollama_list": OllamaAsyncClient.list,
|
|
}
|
|
|
|
# Create patched methods for OpenAI client
|
|
async def patched_chat_completions_create(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs
|
|
)
|
|
|
|
async def patched_completions_create(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs
|
|
)
|
|
|
|
async def patched_embeddings_create(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs
|
|
)
|
|
|
|
def patched_models_list(self, *args, **kwargs):
|
|
async def _iter():
|
|
for item in await _patched_inference_method(
|
|
_original_methods["models_list"], self, "openai", "/v1/models", *args, **kwargs
|
|
):
|
|
yield item
|
|
|
|
return _iter()
|
|
|
|
# Apply OpenAI patches
|
|
AsyncChatCompletions.create = patched_chat_completions_create
|
|
AsyncCompletions.create = patched_completions_create
|
|
AsyncEmbeddings.create = patched_embeddings_create
|
|
AsyncModels.list = patched_models_list
|
|
|
|
# Create patched methods for Ollama client
|
|
async def patched_ollama_generate(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs
|
|
)
|
|
|
|
async def patched_ollama_chat(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs
|
|
)
|
|
|
|
async def patched_ollama_embed(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs
|
|
)
|
|
|
|
async def patched_ollama_ps(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs
|
|
)
|
|
|
|
async def patched_ollama_pull(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs
|
|
)
|
|
|
|
async def patched_ollama_list(self, *args, **kwargs):
|
|
return await _patched_inference_method(
|
|
_original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs
|
|
)
|
|
|
|
# Apply Ollama patches
|
|
OllamaAsyncClient.generate = patched_ollama_generate
|
|
OllamaAsyncClient.chat = patched_ollama_chat
|
|
OllamaAsyncClient.embed = patched_ollama_embed
|
|
OllamaAsyncClient.ps = patched_ollama_ps
|
|
OllamaAsyncClient.pull = patched_ollama_pull
|
|
OllamaAsyncClient.list = patched_ollama_list
|
|
|
|
|
|
def unpatch_inference_clients():
|
|
"""Remove monkey patches and restore original OpenAI and Ollama client methods."""
|
|
global _original_methods
|
|
|
|
if not _original_methods:
|
|
return
|
|
|
|
# Import here to avoid circular imports
|
|
from ollama import AsyncClient as OllamaAsyncClient
|
|
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
|
|
from openai.resources.completions import AsyncCompletions
|
|
from openai.resources.embeddings import AsyncEmbeddings
|
|
from openai.resources.models import AsyncModels
|
|
|
|
# Restore OpenAI client methods
|
|
AsyncChatCompletions.create = _original_methods["chat_completions_create"]
|
|
AsyncCompletions.create = _original_methods["completions_create"]
|
|
AsyncEmbeddings.create = _original_methods["embeddings_create"]
|
|
AsyncModels.list = _original_methods["models_list"]
|
|
|
|
# Restore Ollama client methods if they were patched
|
|
OllamaAsyncClient.generate = _original_methods["ollama_generate"]
|
|
OllamaAsyncClient.chat = _original_methods["ollama_chat"]
|
|
OllamaAsyncClient.embed = _original_methods["ollama_embed"]
|
|
OllamaAsyncClient.ps = _original_methods["ollama_ps"]
|
|
OllamaAsyncClient.pull = _original_methods["ollama_pull"]
|
|
OllamaAsyncClient.list = _original_methods["ollama_list"]
|
|
|
|
_original_methods.clear()
|
|
|
|
|
|
@contextmanager
|
|
def inference_recording(mode: str, storage_dir: str | Path | None = None) -> Generator[None, None, None]:
|
|
"""Context manager for inference recording/replaying."""
|
|
global _current_mode, _current_storage
|
|
|
|
# Store previous state
|
|
prev_mode = _current_mode
|
|
prev_storage = _current_storage
|
|
|
|
try:
|
|
_current_mode = mode
|
|
|
|
if mode in ["record", "replay"]:
|
|
if storage_dir is None:
|
|
raise ValueError("storage_dir is required for record and replay modes")
|
|
_current_storage = ResponseStorage(Path(storage_dir))
|
|
patch_inference_clients()
|
|
|
|
yield
|
|
|
|
finally:
|
|
# Restore previous state
|
|
if mode in ["record", "replay"]:
|
|
unpatch_inference_clients()
|
|
|
|
_current_mode = prev_mode
|
|
_current_storage = prev_storage
|