llama-stack-mirror/llama_stack/testing/api_recorder.py

946 lines
38 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from __future__ import annotations # for forward references
import hashlib
import json
import os
from collections.abc import Generator
from contextlib import contextmanager
from enum import StrEnum
from pathlib import Path
from typing import Any, Literal, cast
from openai import NOT_GIVEN
from llama_stack.log import get_logger
logger = get_logger(__name__, category="testing")
# Global state for the API recording system
# Note: Using module globals instead of ContextVars because the session-scoped
# client initialization happens in one async context, but tests run in different
# contexts, and we need the mode/storage to persist across all contexts.
_current_mode: str | None = None
_current_storage: ResponseStorage | None = None
_original_methods: dict[str, Any] = {}
_memory_cache: dict[str, dict[str, Any]] = {}
# Test context uses ContextVar since it changes per-test and needs async isolation
from contextvars import ContextVar
_test_context: ContextVar[str | None] = ContextVar("_test_context", default=None)
from openai.types.completion_choice import CompletionChoice
# update the "finish_reason" field, since its type definition is wrong (no None is accepted)
CompletionChoice.model_fields["finish_reason"].annotation = Literal["stop", "length", "content_filter"] | None
CompletionChoice.model_rebuild()
REPO_ROOT = Path(__file__).parent.parent.parent
DEFAULT_STORAGE_DIR = REPO_ROOT / "tests/integration/common"
class APIRecordingMode(StrEnum):
LIVE = "live"
RECORD = "record"
REPLAY = "replay"
RECORD_IF_MISSING = "record-if-missing"
def _normalize_file_ids(obj: Any) -> Any:
"""Recursively replace file IDs with a canonical placeholder for consistent hashing."""
import re
if isinstance(obj, dict):
result = {}
for k, v in obj.items():
# Normalize file IDs in attribute dictionaries
if k == "document_id" and isinstance(v, str) and v.startswith("file-"):
result[k] = "file-NORMALIZED"
else:
result[k] = _normalize_file_ids(v)
return result
elif isinstance(obj, list):
return [_normalize_file_ids(item) for item in obj]
elif isinstance(obj, str):
# Replace file-<uuid> patterns in strings (like in text content)
return re.sub(r"file-[a-f0-9]{32}", "file-NORMALIZED", obj)
else:
return obj
def _normalize_response_data(data: dict[str, Any], request_hash: str) -> dict[str, Any]:
"""Normalize fields that change between recordings but don't affect functionality.
This reduces noise in git diffs by making IDs deterministic and timestamps constant.
"""
# Only normalize ID for completion/chat responses, not for model objects
# Model objects have "object": "model" and the ID is the actual model identifier
if "id" in data and data.get("object") != "model":
data["id"] = f"rec-{request_hash[:12]}"
# Normalize timestamp to epoch (0) (for OpenAI-style responses)
# But not for model objects where created timestamp might be meaningful
if "created" in data and data.get("object") != "model":
data["created"] = 0
# Normalize Ollama-specific timestamp fields
if "created_at" in data:
data["created_at"] = "1970-01-01T00:00:00.000000Z"
# Normalize Ollama-specific duration fields (these vary based on system load)
if "total_duration" in data and data["total_duration"] is not None:
data["total_duration"] = 0
if "load_duration" in data and data["load_duration"] is not None:
data["load_duration"] = 0
if "prompt_eval_duration" in data and data["prompt_eval_duration"] is not None:
data["prompt_eval_duration"] = 0
if "eval_duration" in data and data["eval_duration"] is not None:
data["eval_duration"] = 0
return data
def normalize_request(method: str, url: str, headers: dict[str, Any], body: dict[str, Any]) -> str:
"""Create a normalized hash of the request for consistent matching.
Includes test_id from context to ensure test isolation - identical requests
from different tests will have different hashes.
"""
# Extract just the endpoint path
from urllib.parse import urlparse
parsed = urlparse(url)
# Normalize file IDs in the body to ensure consistent hashing across test runs
normalized_body = _normalize_file_ids(body)
normalized: dict[str, Any] = {"method": method.upper(), "endpoint": parsed.path, "body": normalized_body}
# Include test_id for isolation, except for shared infrastructure endpoints
if parsed.path not in ("/api/tags", "/v1/models"):
# Server mode: test ID was synced from provider_data to _test_context
# by _sync_test_context_from_provider_data() at the start of the request.
# We read from _test_context because it's available in all contexts (including
# when making outgoing API calls), whereas PROVIDER_DATA_VAR is only set
# for incoming HTTP requests.
#
# Library client mode: test ID in same-process ContextVar
test_id = _test_context.get()
normalized["test_id"] = test_id
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
request_hash = hashlib.sha256(normalized_json.encode()).hexdigest()
return request_hash
def normalize_tool_request(provider_name: str, tool_name: str, kwargs: dict[str, Any]) -> str:
"""Create a normalized hash of the tool request for consistent matching."""
normalized = {"provider": provider_name, "tool_name": tool_name, "kwargs": kwargs}
# Create hash - sort_keys=True ensures deterministic ordering
normalized_json = json.dumps(normalized, sort_keys=True)
return hashlib.sha256(normalized_json.encode()).hexdigest()
@contextmanager
def set_test_context(test_id: str) -> Generator[None, None, None]:
"""Set the test context for recording isolation.
Usage:
with set_test_context("test_basic_completion"):
# Make API calls that will be recorded with this test_id
response = client.chat.completions.create(...)
"""
token = _test_context.set(test_id)
try:
yield
finally:
_test_context.reset(token)
def patch_httpx_for_test_id():
"""Patch client _prepare_request methods to inject test ID into provider data header.
Patches both LlamaStackClient and OpenAI client to ensure test ID is transported
from client to server via HTTP headers in server mode.
This is needed for server mode where the test ID must be transported from
client to server via HTTP headers. In library_client mode, this patch is a no-op
since everything runs in the same process.
We use the _prepare_request hook that Stainless clients provide for mutating
requests after construction but before sending.
"""
from llama_stack_client import LlamaStackClient
if "llama_stack_client_prepare_request" in _original_methods:
# Already patched
return
# Save original methods
_original_methods["llama_stack_client_prepare_request"] = LlamaStackClient._prepare_request
# Also patch OpenAI client if available (used in compat tests)
try:
from openai import OpenAI
_original_methods["openai_prepare_request"] = OpenAI._prepare_request
except ImportError:
pass
def patched_prepare_request(self, request):
# Call original first (it's a sync method that returns None)
# Determine which original to call based on client type
if "llama_stack_client" in self.__class__.__module__:
_original_methods["llama_stack_client_prepare_request"](self, request)
elif "openai_prepare_request" in _original_methods:
_original_methods["openai_prepare_request"](self, request)
# Only inject test ID in server mode
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
test_id = _test_context.get()
if stack_config_type == "server" and test_id:
# Get existing provider data header or create new dict
provider_data_header = request.headers.get("X-LlamaStack-Provider-Data")
if provider_data_header:
provider_data = json.loads(provider_data_header)
else:
provider_data = {}
# Inject test ID
provider_data["__test_id"] = test_id
request.headers["X-LlamaStack-Provider-Data"] = json.dumps(provider_data)
# Sync version returns None
return None
# Apply patches
LlamaStackClient._prepare_request = patched_prepare_request
if "openai_prepare_request" in _original_methods:
from openai import OpenAI
OpenAI._prepare_request = patched_prepare_request
def unpatch_httpx_for_test_id():
"""Remove client _prepare_request patches for test ID injection."""
if "llama_stack_client_prepare_request" not in _original_methods:
return
from llama_stack_client import LlamaStackClient
LlamaStackClient._prepare_request = _original_methods["llama_stack_client_prepare_request"]
del _original_methods["llama_stack_client_prepare_request"]
# Also restore OpenAI client if it was patched
if "openai_prepare_request" in _original_methods:
from openai import OpenAI
OpenAI._prepare_request = _original_methods["openai_prepare_request"]
del _original_methods["openai_prepare_request"]
def get_api_recording_mode() -> APIRecordingMode:
return APIRecordingMode(os.environ.get("LLAMA_STACK_TEST_INFERENCE_MODE", "replay").lower())
def setup_api_recording():
"""
Returns a context manager that can be used to record or replay API requests (inference and tools).
This is to be used in tests to increase their reliability and reduce reliance on expensive, external services.
Currently supports:
- Inference: OpenAI, Ollama, and LiteLLM clients
- Tools: Search providers (Tavily for now)
Two environment variables are supported:
- LLAMA_STACK_TEST_INFERENCE_MODE: The mode to run in. Options:
- 'live': Make real API calls, no recording
- 'record': Record all API interactions (overwrites existing)
- 'replay': Use recorded responses only (default)
- 'record-if-missing': Replay when possible, record when recording doesn't exist
- LLAMA_STACK_TEST_RECORDING_DIR: The directory to store the recordings in. Default is 'tests/integration/recordings'.
The recordings are stored as JSON files.
"""
mode = get_api_recording_mode()
if mode == APIRecordingMode.LIVE:
return None
storage_dir = os.environ.get("LLAMA_STACK_TEST_RECORDING_DIR", DEFAULT_STORAGE_DIR)
return api_recording(mode=mode, storage_dir=storage_dir)
def _serialize_response(response: Any) -> Any:
if hasattr(response, "model_dump"):
data = response.model_dump(mode="json")
return {
"__type__": f"{response.__class__.__module__}.{response.__class__.__qualname__}",
"__data__": data,
}
elif hasattr(response, "__dict__"):
return dict(response.__dict__)
else:
return response
def _deserialize_response(data: dict[str, Any]) -> Any:
# Check if this is a serialized Pydantic model with type information
if isinstance(data, dict) and "__type__" in data and "__data__" in data:
try:
# Import the original class and reconstruct the object
module_path, class_name = data["__type__"].rsplit(".", 1)
module = __import__(module_path, fromlist=[class_name])
cls = getattr(module, class_name)
if not hasattr(cls, "model_validate"):
raise ValueError(f"Pydantic class {cls} does not support model_validate?")
return cls.model_validate(data["__data__"])
except (ImportError, AttributeError, TypeError, ValueError) as e:
logger.warning(f"Failed to deserialize object of type {data['__type__']}: {e}")
return data["__data__"]
return data
class ResponseStorage:
"""Handles storage/retrieval for API recordings (inference and tools)."""
def __init__(self, base_dir: Path):
self.base_dir = base_dir
def _get_test_dir(self) -> Path:
"""Get the recordings directory in the test file's parent directory.
For test at "tests/integration/inference/test_foo.py::test_bar",
returns "tests/integration/inference/recordings/".
"""
test_id = _test_context.get()
if test_id:
# Extract the directory path from the test nodeid
# e.g., "tests/integration/inference/test_basic.py::test_foo[params]"
# -> get "tests/integration/inference"
test_file = test_id.split("::")[0] # Remove test function part
test_dir = Path(test_file).parent # Get parent directory
# Put recordings in a "recordings" subdirectory of the test's parent dir
# e.g., "tests/integration/inference" -> "tests/integration/inference/recordings"
return test_dir / "recordings"
else:
# Fallback for non-test contexts
return self.base_dir / "recordings"
def _ensure_directories(self) -> Path:
test_dir = self._get_test_dir()
test_dir.mkdir(parents=True, exist_ok=True)
return test_dir
def store_recording(self, request_hash: str, request: dict[str, Any], response: dict[str, Any]):
"""Store a request/response pair both in memory cache and on disk."""
global _memory_cache
# Store in memory cache first
_memory_cache[request_hash] = {"request": request, "response": response}
responses_dir = self._ensure_directories()
# Generate unique response filename using full hash
response_file = f"{request_hash}.json"
# Serialize response body if needed
serialized_response = dict(response)
if "body" in serialized_response:
if isinstance(serialized_response["body"], list):
# Handle streaming responses (list of chunks)
serialized_response["body"] = [_serialize_response(chunk) for chunk in serialized_response["body"]]
else:
# Handle single response
serialized_response["body"] = _serialize_response(serialized_response["body"])
# If this is a model-list endpoint recording, include models digest in filename to distinguish variants
endpoint = request.get("endpoint")
test_id = _test_context.get()
if endpoint in ("/api/tags", "/v1/models"):
test_id = None
digest = _model_identifiers_digest(endpoint, response)
response_file = f"models-{request_hash}-{digest}.json"
response_path = responses_dir / response_file
# Save response to JSON file
with open(response_path, "w") as f:
json.dump({"test_id": test_id, "request": request, "response": serialized_response}, f, indent=2)
f.write("\n")
f.flush()
def find_recording(self, request_hash: str) -> dict[str, Any] | None:
"""Find a recorded response by request hash."""
response_file = f"{request_hash}.json"
# Check test-specific directory first
test_dir = self._get_test_dir()
response_path = test_dir / response_file
if response_path.exists():
return _recording_from_file(response_path)
# Fallback to base recordings directory (for session-level recordings)
fallback_dir = self.base_dir / "recordings"
fallback_path = fallback_dir / response_file
if fallback_path.exists():
return _recording_from_file(fallback_path)
return None
def _model_list_responses(self, request_hash: str) -> list[dict[str, Any]]:
"""Find all model-list recordings with the given hash (different digests)."""
results: list[dict[str, Any]] = []
# Check test-specific directory first
test_dir = self._get_test_dir()
if test_dir.exists():
for path in test_dir.glob(f"models-{request_hash}-*.json"):
data = _recording_from_file(path)
results.append(data)
# Also check fallback directory
fallback_dir = self.base_dir / "recordings"
if fallback_dir.exists():
for path in fallback_dir.glob(f"models-{request_hash}-*.json"):
data = _recording_from_file(path)
results.append(data)
return results
def _recording_from_file(response_path) -> dict[str, Any]:
with open(response_path) as f:
data = json.load(f)
# Deserialize response body if needed
if "response" in data and "body" in data["response"]:
if isinstance(data["response"]["body"], list):
# Handle streaming responses
data["response"]["body"] = [_deserialize_response(chunk) for chunk in data["response"]["body"]]
else:
# Handle single response
data["response"]["body"] = _deserialize_response(data["response"]["body"])
return cast(dict[str, Any], data)
def _model_identifiers_digest(endpoint: str, response: dict[str, Any]) -> str:
"""Generate a digest from model identifiers for distinguishing different model sets."""
def _extract_model_identifiers():
"""Extract a stable set of identifiers for model-list endpoints.
Supported endpoints:
- '/api/tags' (Ollama): response body has 'models': [ { name/model/digest/id/... }, ... ]
- '/v1/models' (OpenAI): response body is: [ { id: ... }, ... ]
Returns a list of unique identifiers or None if structure doesn't match.
"""
if "models" in response["body"]:
# ollama
items = response["body"]["models"]
else:
# openai
items = response["body"]
idents = [m.model if endpoint == "/api/tags" else m.id for m in items]
return sorted(set(idents))
identifiers = _extract_model_identifiers()
return hashlib.sha256(("|".join(identifiers)).encode("utf-8")).hexdigest()[:8]
def _combine_model_list_responses(endpoint: str, records: list[dict[str, Any]]) -> dict[str, Any] | None:
"""Return a single, unioned recording for supported model-list endpoints.
Merges multiple recordings with different model sets (from different servers) into
a single response containing all models.
"""
if not records:
return None
seen: dict[str, dict[str, Any]] = {}
for rec in records:
body = rec["response"]["body"]
if endpoint == "/v1/models":
for m in body:
key = m.id
seen[key] = m
elif endpoint == "/api/tags":
for m in body.models:
key = m.model
seen[key] = m
ordered = [seen[k] for k in sorted(seen.keys())]
canonical = records[0]
canonical_req = canonical.get("request", {})
if isinstance(canonical_req, dict):
canonical_req["endpoint"] = endpoint
body = ordered
if endpoint == "/api/tags":
from ollama import ListResponse
body = ListResponse(models=ordered)
return {"request": canonical_req, "response": {"body": body, "is_streaming": False}}
async def _patched_tool_invoke_method(
original_method, provider_name: str, self, tool_name: str, kwargs: dict[str, Any]
):
"""Patched version of tool runtime invoke_tool method for recording/replay."""
global _current_mode, _current_storage
if _current_mode == APIRecordingMode.LIVE or _current_storage is None:
# Normal operation
return await original_method(self, tool_name, kwargs)
# In server mode, sync test ID from provider_data to _test_context for storage operations
test_context_token = _sync_test_context_from_provider_data()
try:
request_hash = normalize_tool_request(provider_name, tool_name, kwargs)
if _current_mode in (APIRecordingMode.REPLAY, APIRecordingMode.RECORD_IF_MISSING):
recording = _current_storage.find_recording(request_hash)
if recording:
return recording["response"]["body"]
elif _current_mode == APIRecordingMode.REPLAY:
raise RuntimeError(
f"No recorded tool result found for {provider_name}.{tool_name}\n"
f"Request: {kwargs}\n"
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
)
# If RECORD_IF_MISSING and no recording found, fall through to record
if _current_mode in (APIRecordingMode.RECORD, APIRecordingMode.RECORD_IF_MISSING):
# Check in-memory cache first (collision detection)
global _memory_cache
if request_hash in _memory_cache:
# Return the cached response instead of making a new tool call
return _memory_cache[request_hash]["response"]["body"]
# No cached response, make the tool call and record it
result = await original_method(self, tool_name, kwargs)
request_data = {
"provider": provider_name,
"tool_name": tool_name,
"kwargs": kwargs,
}
response_data = {"body": result, "is_streaming": False}
# Store the recording (both in memory and on disk)
_current_storage.store_recording(request_hash, request_data, response_data)
return result
else:
raise AssertionError(f"Invalid mode: {_current_mode}")
finally:
# Reset test context if we set it in server mode
if test_context_token is not None:
_test_context.reset(test_context_token)
def _sync_test_context_from_provider_data():
"""In server mode, sync test ID from provider_data to _test_context.
This ensures that storage operations (which read from _test_context) work correctly
in server mode where the test ID arrives via HTTP header → provider_data.
Returns a token to reset _test_context, or None if no sync was needed.
"""
stack_config_type = os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE", "library_client")
if stack_config_type != "server":
return None
try:
from llama_stack.core.request_headers import PROVIDER_DATA_VAR
provider_data = PROVIDER_DATA_VAR.get()
if provider_data and "__test_id" in provider_data:
test_id = provider_data["__test_id"]
return _test_context.set(test_id)
except ImportError:
pass
return None
async def _patched_inference_method(original_method, self, client_type, endpoint, *args, **kwargs):
global _current_mode, _current_storage
if _current_mode == APIRecordingMode.LIVE or _current_storage is None:
# Normal operation
if client_type == "litellm":
return await original_method(*args, **kwargs)
else:
return await original_method(self, *args, **kwargs)
# In server mode, sync test ID from provider_data to _test_context for storage operations
test_context_token = _sync_test_context_from_provider_data()
try:
# Get base URL based on client type
if client_type == "openai":
base_url = str(self._client.base_url)
# the OpenAI client methods may pass NOT_GIVEN for unset parameters; filter these out
kwargs = {k: v for k, v in kwargs.items() if v is not NOT_GIVEN}
elif client_type == "ollama":
# Get base URL from the client (Ollama client uses host attribute)
base_url = getattr(self, "host", "http://localhost:11434")
if not base_url.startswith("http"):
base_url = f"http://{base_url}"
elif client_type == "litellm":
# For LiteLLM, extract base URL from kwargs if available
base_url = kwargs.get("api_base", "https://api.openai.com")
else:
raise ValueError(f"Unknown client type: {client_type}")
url = base_url.rstrip("/") + endpoint
method = "POST"
headers = {}
body = kwargs
request_hash = normalize_request(method, url, headers, body)
if _current_mode in (APIRecordingMode.REPLAY, APIRecordingMode.RECORD_IF_MISSING):
# Special handling for model-list endpoints: return union of all responses
if endpoint in ("/api/tags", "/v1/models"):
records = _current_storage._model_list_responses(request_hash)
recording = _combine_model_list_responses(endpoint, records)
else:
recording = _current_storage.find_recording(request_hash)
if recording:
response_body = recording["response"]["body"]
if recording["response"].get("is_streaming", False) or recording["response"].get("is_paginated", False):
async def replay_stream():
for chunk in response_body:
yield chunk
return replay_stream()
else:
return response_body
elif _current_mode == APIRecordingMode.REPLAY:
raise RuntimeError(
f"No recorded response found for request hash: {request_hash}\n"
f"Request: {method} {url} {body}\n"
f"Model: {body.get('model', 'unknown')}\n"
f"To record this response, run with LLAMA_STACK_TEST_INFERENCE_MODE=record"
)
# If RECORD_IF_MISSING and no recording found, fall through to record
if _current_mode in (APIRecordingMode.RECORD, APIRecordingMode.RECORD_IF_MISSING):
# Check in-memory cache first (collision detection)
global _memory_cache
if request_hash in _memory_cache:
# Return the cached response instead of making a new API call
cached_recording = _memory_cache[request_hash]
response_body = cached_recording["response"]["body"]
if cached_recording["response"].get("is_streaming", False) or cached_recording["response"].get(
"is_paginated", False
):
async def replay_cached_stream():
for chunk in response_body:
yield chunk
return replay_cached_stream()
else:
return response_body
# No cached response, make the API call and record it
if client_type == "litellm":
response = await original_method(*args, **kwargs)
else:
response = await original_method(self, *args, **kwargs)
request_data = {
"method": method,
"url": url,
"headers": headers,
"body": body,
"endpoint": endpoint,
"model": body.get("model", ""),
}
# Determine if this is a streaming request based on request parameters
is_streaming = body.get("stream", False)
# Special case: /v1/models is a paginated endpoint that returns an async iterator
is_paginated = endpoint == "/v1/models"
if is_streaming or is_paginated:
# For streaming/paginated responses, we need to collect all chunks immediately before yielding
# This ensures the recording is saved even if the generator isn't fully consumed
chunks = []
async for chunk in response:
chunks.append(chunk)
# Store the recording immediately (both in memory and on disk)
# For paginated endpoints, mark as paginated rather than streaming
response_data = {"body": chunks, "is_streaming": is_streaming, "is_paginated": is_paginated}
_current_storage.store_recording(request_hash, request_data, response_data)
# Return a generator that replays the stored chunks
async def replay_recorded_stream():
for chunk in chunks:
yield chunk
return replay_recorded_stream()
else:
response_data = {"body": response, "is_streaming": False}
# Store the response (both in memory and on disk)
_current_storage.store_recording(request_hash, request_data, response_data)
return response
else:
raise AssertionError(f"Invalid mode: {_current_mode}")
finally:
# Reset test context if we set it in server mode
if test_context_token is not None:
_test_context.reset(test_context_token)
def patch_api_clients():
"""Install monkey patches for inference clients and tool runtime methods."""
global _original_methods
import litellm
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
from openai.resources.embeddings import AsyncEmbeddings
from openai.resources.models import AsyncModels
from llama_stack.providers.remote.tool_runtime.tavily_search.tavily_search import TavilySearchToolRuntimeImpl
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
# Store original methods for OpenAI, Ollama, LiteLLM clients, and tool runtimes
_original_methods = {
"chat_completions_create": AsyncChatCompletions.create,
"completions_create": AsyncCompletions.create,
"embeddings_create": AsyncEmbeddings.create,
"models_list": AsyncModels.list,
"ollama_generate": OllamaAsyncClient.generate,
"ollama_chat": OllamaAsyncClient.chat,
"ollama_embed": OllamaAsyncClient.embed,
"ollama_ps": OllamaAsyncClient.ps,
"ollama_pull": OllamaAsyncClient.pull,
"ollama_list": OllamaAsyncClient.list,
"litellm_acompletion": litellm.acompletion,
"litellm_atext_completion": litellm.atext_completion,
"litellm_openai_mixin_get_api_key": LiteLLMOpenAIMixin.get_api_key,
"tavily_invoke_tool": TavilySearchToolRuntimeImpl.invoke_tool,
}
# Create patched methods for OpenAI client
async def patched_chat_completions_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["chat_completions_create"], self, "openai", "/v1/chat/completions", *args, **kwargs
)
async def patched_completions_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["completions_create"], self, "openai", "/v1/completions", *args, **kwargs
)
async def patched_embeddings_create(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["embeddings_create"], self, "openai", "/v1/embeddings", *args, **kwargs
)
def patched_models_list(self, *args, **kwargs):
async def _iter():
result = await _patched_inference_method(
_original_methods["models_list"], self, "openai", "/v1/models", *args, **kwargs
)
# The result is either an async generator (streaming/paginated) or a list
# If it's an async generator, iterate through it
if hasattr(result, "__aiter__"):
async for item in result:
yield item
else:
# It's a list, yield each item
for item in result:
yield item
return _iter()
# Apply OpenAI patches
AsyncChatCompletions.create = patched_chat_completions_create
AsyncCompletions.create = patched_completions_create
AsyncEmbeddings.create = patched_embeddings_create
AsyncModels.list = patched_models_list
# Create patched methods for Ollama client
async def patched_ollama_generate(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_generate"], self, "ollama", "/api/generate", *args, **kwargs
)
async def patched_ollama_chat(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_chat"], self, "ollama", "/api/chat", *args, **kwargs
)
async def patched_ollama_embed(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_embed"], self, "ollama", "/api/embeddings", *args, **kwargs
)
async def patched_ollama_ps(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_ps"], self, "ollama", "/api/ps", *args, **kwargs
)
async def patched_ollama_pull(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_pull"], self, "ollama", "/api/pull", *args, **kwargs
)
async def patched_ollama_list(self, *args, **kwargs):
return await _patched_inference_method(
_original_methods["ollama_list"], self, "ollama", "/api/tags", *args, **kwargs
)
# Apply Ollama patches
OllamaAsyncClient.generate = patched_ollama_generate
OllamaAsyncClient.chat = patched_ollama_chat
OllamaAsyncClient.embed = patched_ollama_embed
OllamaAsyncClient.ps = patched_ollama_ps
OllamaAsyncClient.pull = patched_ollama_pull
OllamaAsyncClient.list = patched_ollama_list
# Create patched methods for LiteLLM
async def patched_litellm_acompletion(*args, **kwargs):
return await _patched_inference_method(
_original_methods["litellm_acompletion"], None, "litellm", "/chat/completions", *args, **kwargs
)
async def patched_litellm_atext_completion(*args, **kwargs):
return await _patched_inference_method(
_original_methods["litellm_atext_completion"], None, "litellm", "/completions", *args, **kwargs
)
# Apply LiteLLM patches
litellm.acompletion = patched_litellm_acompletion
litellm.atext_completion = patched_litellm_atext_completion
# Create patched method for LiteLLMOpenAIMixin.get_api_key
def patched_litellm_get_api_key(self):
global _current_mode
if _current_mode != APIRecordingMode.REPLAY:
return _original_methods["litellm_openai_mixin_get_api_key"](self)
else:
# For record/replay modes, return a fake API key to avoid exposing real credentials
return "fake-api-key-for-testing"
# Apply LiteLLMOpenAIMixin patch
LiteLLMOpenAIMixin.get_api_key = patched_litellm_get_api_key
# Create patched methods for tool runtimes
async def patched_tavily_invoke_tool(self, tool_name: str, kwargs: dict[str, Any]):
return await _patched_tool_invoke_method(
_original_methods["tavily_invoke_tool"], "tavily", self, tool_name, kwargs
)
# Apply tool runtime patches
TavilySearchToolRuntimeImpl.invoke_tool = patched_tavily_invoke_tool
def unpatch_api_clients():
"""Remove monkey patches and restore original client methods and tool runtimes."""
global _original_methods, _memory_cache
if not _original_methods:
return
# Import here to avoid circular imports
import litellm
from ollama import AsyncClient as OllamaAsyncClient
from openai.resources.chat.completions import AsyncCompletions as AsyncChatCompletions
from openai.resources.completions import AsyncCompletions
from openai.resources.embeddings import AsyncEmbeddings
from openai.resources.models import AsyncModels
from llama_stack.providers.remote.tool_runtime.tavily_search.tavily_search import TavilySearchToolRuntimeImpl
from llama_stack.providers.utils.inference.litellm_openai_mixin import LiteLLMOpenAIMixin
# Restore OpenAI client methods
AsyncChatCompletions.create = _original_methods["chat_completions_create"]
AsyncCompletions.create = _original_methods["completions_create"]
AsyncEmbeddings.create = _original_methods["embeddings_create"]
AsyncModels.list = _original_methods["models_list"]
# Restore Ollama client methods if they were patched
OllamaAsyncClient.generate = _original_methods["ollama_generate"]
OllamaAsyncClient.chat = _original_methods["ollama_chat"]
OllamaAsyncClient.embed = _original_methods["ollama_embed"]
OllamaAsyncClient.ps = _original_methods["ollama_ps"]
OllamaAsyncClient.pull = _original_methods["ollama_pull"]
OllamaAsyncClient.list = _original_methods["ollama_list"]
# Restore LiteLLM methods
litellm.acompletion = _original_methods["litellm_acompletion"]
litellm.atext_completion = _original_methods["litellm_atext_completion"]
LiteLLMOpenAIMixin.get_api_key = _original_methods["litellm_openai_mixin_get_api_key"]
# Restore tool runtime methods
TavilySearchToolRuntimeImpl.invoke_tool = _original_methods["tavily_invoke_tool"]
_original_methods.clear()
# Clear memory cache to prevent memory leaks
_memory_cache.clear()
@contextmanager
def api_recording(mode: str, storage_dir: str | Path | None = None) -> Generator[None, None, None]:
"""Context manager for API recording/replaying (inference and tools)."""
global _current_mode, _current_storage
# Store previous state
prev_mode = _current_mode
prev_storage = _current_storage
try:
_current_mode = mode
if mode in ["record", "replay", "record-if-missing"]:
if storage_dir is None:
raise ValueError("storage_dir is required for record, replay, and record-if-missing modes")
_current_storage = ResponseStorage(Path(storage_dir))
patch_api_clients()
yield
finally:
# Restore previous state
if mode in ["record", "replay", "record-if-missing"]:
unpatch_api_clients()
_current_mode = prev_mode
_current_storage = prev_storage