llama-stack-mirror/llama_stack/apis/models/models.py
Ben Browning 92fdf6d0c9 Use our own pydantic models for OpenAI Server APIs
Importing the models from the OpenAI client library required a
top-level dependency on the openai python package, and also was
incompatible with our API generation code due to some quirks in how
the OpenAI pydantic models are defined.

So, this creates our own stubs of those pydantic models so that we're
in more direct control of our API surface for this OpenAI-compatible
API, so that it works with our code generation, and so that the openai
python client isn't a hard requirement of Llama Stack's API.
2025-04-09 15:47:02 -04:00

108 lines
2.8 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from enum import Enum
from typing import Any, Dict, List, Literal, Optional, Protocol, runtime_checkable
from pydantic import BaseModel, ConfigDict, Field
from llama_stack.apis.resource import Resource, ResourceType
from llama_stack.providers.utils.telemetry.trace_protocol import trace_protocol
from llama_stack.schema_utils import json_schema_type, webmethod
class CommonModelFields(BaseModel):
metadata: Dict[str, Any] = Field(
default_factory=dict,
description="Any additional metadata for this model",
)
@json_schema_type
class ModelType(str, Enum):
llm = "llm"
embedding = "embedding"
@json_schema_type
class Model(CommonModelFields, Resource):
type: Literal[ResourceType.model.value] = ResourceType.model.value
@property
def model_id(self) -> str:
return self.identifier
@property
def provider_model_id(self) -> str:
return self.provider_resource_id
model_config = ConfigDict(protected_namespaces=())
model_type: ModelType = Field(default=ModelType.llm)
class ModelInput(CommonModelFields):
model_id: str
provider_id: Optional[str] = None
provider_model_id: Optional[str] = None
model_type: Optional[ModelType] = ModelType.llm
model_config = ConfigDict(protected_namespaces=())
class ListModelsResponse(BaseModel):
data: List[Model]
@json_schema_type
class OpenAIModel(BaseModel):
"""A model from OpenAI.
:id: The ID of the model
:object: The object type, which will be "model"
:created: The Unix timestamp in seconds when the model was created
:owned_by: The owner of the model
"""
id: str
object: Literal["model"] = "model"
created: int
owned_by: str
class OpenAIListModelsResponse(BaseModel):
data: List[OpenAIModel]
@runtime_checkable
@trace_protocol
class Models(Protocol):
@webmethod(route="/models", method="GET")
async def list_models(self) -> ListModelsResponse: ...
@webmethod(route="/openai/v1/models", method="GET")
async def openai_list_models(self) -> OpenAIListModelsResponse: ...
@webmethod(route="/models/{model_id:path}", method="GET")
async def get_model(
self,
model_id: str,
) -> Model: ...
@webmethod(route="/models", method="POST")
async def register_model(
self,
model_id: str,
provider_model_id: Optional[str] = None,
provider_id: Optional[str] = None,
metadata: Optional[Dict[str, Any]] = None,
model_type: Optional[ModelType] = None,
) -> Model: ...
@webmethod(route="/models/{model_id:path}", method="DELETE")
async def unregister_model(
self,
model_id: str,
) -> None: ...