mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-21 16:07:16 +00:00
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 0s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 0s
Test External Providers Installed via Module / test-external-providers-from-module (venv) (push) Has been skipped
Python Package Build Test / build (3.12) (push) Failing after 10s
Python Package Build Test / build (3.13) (push) Failing after 10s
Integration Tests (Replay) / Integration Tests (, , , client=, ) (push) Failing after 14s
Unit Tests / unit-tests (3.13) (push) Failing after 11s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 20s
Unit Tests / unit-tests (3.12) (push) Failing after 16s
Test External API and Providers / test-external (venv) (push) Failing after 28s
Vector IO Integration Tests / test-matrix (push) Failing after 30s
API Conformance Tests / check-schema-compatibility (push) Successful in 38s
UI Tests / ui-tests (22) (push) Successful in 1m32s
Pre-commit / pre-commit (push) Successful in 3m16s
# What does this PR do? Adds a test and a standardized way to build future tests out for telemetry in llama stack. Contributes to https://github.com/llamastack/llama-stack/issues/3806 ## Test Plan This is the test plan 😎
112 lines
4.1 KiB
Python
112 lines
4.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
"""Telemetry tests verifying @trace_protocol decorator format using in-memory exporter."""
|
|
|
|
import json
|
|
import os
|
|
|
|
import pytest
|
|
|
|
pytestmark = pytest.mark.skipif(
|
|
os.environ.get("LLAMA_STACK_TEST_STACK_CONFIG_TYPE") == "server",
|
|
reason="In-memory telemetry tests only work in library_client mode (server mode runs in separate process)",
|
|
)
|
|
|
|
|
|
def test_streaming_chunk_count(mock_otlp_collector, llama_stack_client, text_model_id):
|
|
"""Verify streaming adds chunk_count and __type__=async_generator."""
|
|
|
|
stream = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Test trace openai 1"}],
|
|
stream=True,
|
|
)
|
|
|
|
chunks = list(stream)
|
|
assert len(chunks) > 0
|
|
|
|
spans = mock_otlp_collector.get_spans()
|
|
assert len(spans) > 0
|
|
|
|
chunk_count = None
|
|
for span in spans:
|
|
if span.attributes.get("__type__") == "async_generator":
|
|
chunk_count = span.attributes.get("chunk_count")
|
|
if chunk_count:
|
|
chunk_count = int(chunk_count)
|
|
break
|
|
|
|
assert chunk_count is not None
|
|
assert chunk_count == len(chunks)
|
|
|
|
|
|
def test_telemetry_format_completeness(mock_otlp_collector, llama_stack_client, text_model_id):
|
|
"""Comprehensive validation of telemetry data format including spans and metrics."""
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Test trace openai with temperature 0.7"}],
|
|
temperature=0.7,
|
|
max_tokens=100,
|
|
stream=False,
|
|
)
|
|
|
|
# Handle both dict and Pydantic model for usage
|
|
# This occurs due to the replay system returning a dict for usage, but the client returning a Pydantic model
|
|
# TODO: Fix this by making the replay system return a Pydantic model for usage
|
|
usage = response.usage if isinstance(response.usage, dict) else response.usage.model_dump()
|
|
assert usage.get("prompt_tokens") and usage["prompt_tokens"] > 0
|
|
assert usage.get("completion_tokens") and usage["completion_tokens"] > 0
|
|
assert usage.get("total_tokens") and usage["total_tokens"] > 0
|
|
|
|
# Verify spans
|
|
spans = mock_otlp_collector.get_spans()
|
|
assert len(spans) == 5
|
|
|
|
# we only need this captured one time
|
|
logged_model_id = None
|
|
|
|
for span in spans:
|
|
attrs = span.attributes
|
|
assert attrs is not None
|
|
|
|
# Root span is created manually by tracing middleware, not by @trace_protocol decorator
|
|
is_root_span = attrs.get("__root__") is True
|
|
|
|
if is_root_span:
|
|
# Root spans have different attributes
|
|
assert attrs.get("__location__") in ["library_client", "server"]
|
|
else:
|
|
# Non-root spans are created by @trace_protocol decorator
|
|
assert attrs.get("__autotraced__")
|
|
assert attrs.get("__class__") and attrs.get("__method__")
|
|
assert attrs.get("__type__") in ["async", "sync", "async_generator"]
|
|
|
|
args = json.loads(attrs["__args__"])
|
|
if "model_id" in args:
|
|
logged_model_id = args["model_id"]
|
|
|
|
assert logged_model_id is not None
|
|
assert logged_model_id == text_model_id
|
|
|
|
# TODO: re-enable this once metrics get fixed
|
|
"""
|
|
# Verify token usage metrics in response
|
|
metrics = mock_otlp_collector.get_metrics()
|
|
|
|
assert metrics
|
|
for metric in metrics:
|
|
assert metric.name in ["completion_tokens", "total_tokens", "prompt_tokens"]
|
|
assert metric.unit == "tokens"
|
|
assert metric.data.data_points and len(metric.data.data_points) == 1
|
|
match metric.name:
|
|
case "completion_tokens":
|
|
assert metric.data.data_points[0].value == usage["completion_tokens"]
|
|
case "total_tokens":
|
|
assert metric.data.data_points[0].value == usage["total_tokens"]
|
|
case "prompt_tokens":
|
|
assert metric.data.data_points[0].value == usage["prompt_tokens"
|
|
"""
|