llama-stack-mirror/llama_stack/providers/tests/inference/test_text_inference.py
LESSuseLESS 2cbe9395b0
feat: D69478008 [llama-stack] turning tests into data-driven (#1180)
# What does this PR do?

We have several places running tests for different purposes.
- oss llama stack
  - provider tests
  - e2e tests
- provider llama stack
  - unit tests
  - e2e tests

It would be nice if they can *share the same set of test data*, so we
maintain the consistency between spec and implementation. This is what
this diff is about, isolating test data from test coding, so that we can
reuse the same data at different places by writing different test
coding.

## Test Plan

== Set up Ollama local server  
==  Run a provider test
conda activate stack

OLLAMA_URL="http://localhost:8321" \
pytest -v -s -k "ollama" --inference-model="llama3.2:3b-instruct-fp16" \

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion_structured_output
// test_structured_output should also work

== Run an e2e test
conda activate sherpa
with-proxy pip install llama-stack
export INFERENCE_MODEL=llama3.2:3b-instruct-fp16
export LLAMA_STACK_PORT=8322
with-proxy llama stack build --template ollama
with-proxy llama stack run --env OLLAMA_URL=http://localhost:8321 ollama
  - Run test client,
LLAMA_STACK_PORT=8322 LLAMA_STACK_BASE_URL="http://localhost:8322" \
pytest -v -s --inference-model="llama3.2:3b-instruct-fp16" \

tests/client-sdk/inference/test_text_inference.py::test_text_completion_structured_output
// test_text_chat_completion_structured_output should also work

## Notes

- This PR was automatically generated by oss_sync
- Please refer to D69478008 for more details.
2025-02-20 14:13:06 -08:00

402 lines
14 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import pytest
from pydantic import BaseModel, TypeAdapter, ValidationError
from llama_stack.apis.common.content_types import ToolCallParseStatus
from llama_stack.apis.inference import (
ChatCompletionResponse,
ChatCompletionResponseEventType,
ChatCompletionResponseStreamChunk,
CompletionResponse,
CompletionResponseStreamChunk,
JsonSchemaResponseFormat,
LogProbConfig,
Message,
SystemMessage,
ToolChoice,
UserMessage,
)
from llama_stack.apis.models import ListModelsResponse, Model
from llama_stack.models.llama.datatypes import (
SamplingParams,
StopReason,
ToolCall,
ToolDefinition,
ToolParamDefinition,
ToolPromptFormat,
)
from llama_stack.providers.tests.test_cases.test_case import TestCase
from .utils import group_chunks
# How to run this test:
#
# pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py
# -m "(fireworks or ollama) and llama_3b"
# --env FIREWORKS_API_KEY=<your_api_key>
def get_expected_stop_reason(model: str):
return StopReason.end_of_message if ("Llama3.1" in model or "Llama-3.1" in model) else StopReason.end_of_turn
@pytest.fixture
def common_params(inference_model):
return {
"tool_choice": ToolChoice.auto,
"tool_prompt_format": (
ToolPromptFormat.json
if ("Llama3.1" in inference_model or "Llama-3.1" in inference_model)
else ToolPromptFormat.python_list
),
}
@pytest.fixture
def sample_messages():
return [
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="What's the weather like today?"),
]
@pytest.fixture
def sample_tool_definition():
return ToolDefinition(
tool_name="get_weather",
description="Get the current weather",
parameters={
"location": ToolParamDefinition(
param_type="string",
description="The city and state, e.g. San Francisco, CA",
),
},
)
class TestInference:
# Session scope for asyncio because the tests in this class all
# share the same provider instance.
@pytest.mark.asyncio(loop_scope="session")
async def test_model_list(self, inference_model, inference_stack):
_, models_impl = inference_stack
response = await models_impl.list_models()
assert isinstance(response, ListModelsResponse)
assert isinstance(response.data, list)
assert len(response.data) >= 1
assert all(isinstance(model, Model) for model in response.data)
model_def = None
for model in response.data:
if model.identifier == inference_model:
model_def = model
break
assert model_def is not None
@pytest.mark.asyncio(loop_scope="session")
async def test_completion(self, inference_model, inference_stack):
inference_impl, _ = inference_stack
response = await inference_impl.completion(
content="Micheael Jordan is born in ",
stream=False,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
assert isinstance(response, CompletionResponse)
assert "1963" in response.content
chunks = [
r
async for r in await inference_impl.completion(
content="Roses are red,",
stream=True,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=50,
),
)
]
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
assert len(chunks) >= 1
last = chunks[-1]
assert last.stop_reason == StopReason.out_of_tokens
@pytest.mark.asyncio(loop_scope="session")
async def test_completion_logprobs(self, inference_model, inference_stack):
inference_impl, _ = inference_stack
response = await inference_impl.completion(
content="Micheael Jordan is born in ",
stream=False,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=5,
),
logprobs=LogProbConfig(
top_k=3,
),
)
assert isinstance(response, CompletionResponse)
assert 1 <= len(response.logprobs) <= 5
assert response.logprobs, "Logprobs should not be empty"
assert all(len(logprob.logprobs_by_token) == 3 for logprob in response.logprobs)
chunks = [
r
async for r in await inference_impl.completion(
content="Roses are red,",
stream=True,
model_id=inference_model,
sampling_params=SamplingParams(
max_tokens=5,
),
logprobs=LogProbConfig(
top_k=3,
),
)
]
assert all(isinstance(chunk, CompletionResponseStreamChunk) for chunk in chunks)
assert (
1 <= len(chunks) <= 6
) # why 6 and not 5? the response may have an extra closing chunk, e.g. for usage or stop_reason
for chunk in chunks:
if chunk.delta: # if there's a token, we expect logprobs
assert chunk.logprobs, "Logprobs should not be empty"
assert all(len(logprob.logprobs_by_token) == 3 for logprob in chunk.logprobs)
else: # no token, no logprobs
assert not chunk.logprobs, "Logprobs should be empty"
@pytest.mark.parametrize("test_case", ["completion-01"])
@pytest.mark.asyncio(loop_scope="session")
async def test_completion_structured_output(self, inference_model, inference_stack, test_case):
inference_impl, _ = inference_stack
class Output(BaseModel):
name: str
year_born: str
year_retired: str
tc = TestCase(test_case)
user_input = tc["user_input"]
response = await inference_impl.completion(
model_id=inference_model,
content=user_input,
stream=False,
sampling_params=SamplingParams(
max_tokens=50,
),
response_format=JsonSchemaResponseFormat(
json_schema=Output.model_json_schema(),
),
)
assert isinstance(response, CompletionResponse)
assert isinstance(response.content, str)
answer = Output.model_validate_json(response.content)
expected = tc["expected"]
assert answer.name == expected["name"]
assert answer.year_born == expected["year_born"]
assert answer.year_retired == expected["year_retired"]
@pytest.mark.asyncio(loop_scope="session")
async def test_chat_completion_non_streaming(
self, inference_model, inference_stack, common_params, sample_messages
):
inference_impl, _ = inference_stack
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
assert len(response.completion_message.content) > 0
@pytest.mark.parametrize("test_case", ["chat_completion-01"])
@pytest.mark.asyncio(loop_scope="session")
async def test_structured_output(self, inference_model, inference_stack, common_params, test_case):
inference_impl, _ = inference_stack
class AnswerFormat(BaseModel):
first_name: str
last_name: str
year_of_birth: int
num_seasons_in_nba: int
tc = TestCase(test_case)
messages = [TypeAdapter(Message).validate_python(m) for m in tc["messages"]]
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
stream=False,
response_format=JsonSchemaResponseFormat(
json_schema=AnswerFormat.model_json_schema(),
),
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert response.completion_message.role == "assistant"
assert isinstance(response.completion_message.content, str)
answer = AnswerFormat.model_validate_json(response.completion_message.content)
expected = tc["expected"]
assert answer.first_name == expected["first_name"]
assert answer.last_name == expected["last_name"]
assert answer.year_of_birth == expected["year_of_birth"]
assert answer.num_seasons_in_nba == expected["num_seasons_in_nba"]
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=[
SystemMessage(content="You are a helpful assistant."),
UserMessage(content="Please give me information about Michael Jordan."),
],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
assert isinstance(response.completion_message.content, str)
with pytest.raises(ValidationError):
AnswerFormat.model_validate_json(response.completion_message.content)
@pytest.mark.asyncio(loop_scope="session")
async def test_chat_completion_streaming(self, inference_model, inference_stack, common_params, sample_messages):
inference_impl, _ = inference_stack
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=sample_messages,
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
end = grouped[ChatCompletionResponseEventType.complete][0]
assert end.event.stop_reason == StopReason.end_of_turn
@pytest.mark.asyncio(loop_scope="session")
async def test_chat_completion_with_tool_calling(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=False,
**common_params,
)
assert isinstance(response, ChatCompletionResponse)
message = response.completion_message
# This is not supported in most providers :/ they don't return eom_id / eot_id
# stop_reason = get_expected_stop_reason(inference_settings["common_params"]["model"])
# assert message.stop_reason == stop_reason
assert message.tool_calls is not None
assert len(message.tool_calls) > 0
call = message.tool_calls[0]
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]
@pytest.mark.asyncio(loop_scope="session")
async def test_chat_completion_with_tool_calling_streaming(
self,
inference_model,
inference_stack,
common_params,
sample_messages,
sample_tool_definition,
):
inference_impl, _ = inference_stack
messages = sample_messages + [
UserMessage(
content="What's the weather like in San Francisco?",
)
]
response = [
r
async for r in await inference_impl.chat_completion(
model_id=inference_model,
messages=messages,
tools=[sample_tool_definition],
stream=True,
**common_params,
)
]
assert len(response) > 0
assert all(isinstance(chunk, ChatCompletionResponseStreamChunk) for chunk in response)
grouped = group_chunks(response)
assert len(grouped[ChatCompletionResponseEventType.start]) == 1
assert len(grouped[ChatCompletionResponseEventType.progress]) > 0
assert len(grouped[ChatCompletionResponseEventType.complete]) == 1
# This is not supported in most providers :/ they don't return eom_id / eot_id
# expected_stop_reason = get_expected_stop_reason(
# inference_settings["common_params"]["model"]
# )
# end = grouped[ChatCompletionResponseEventType.complete][0]
# assert end.event.stop_reason == expected_stop_reason
if "Llama3.1" in inference_model:
assert all(
chunk.event.delta.type == "tool_call" for chunk in grouped[ChatCompletionResponseEventType.progress]
)
first = grouped[ChatCompletionResponseEventType.progress][0]
if not isinstance(first.event.delta.tool_call, ToolCall): # first chunk may contain entire call
assert first.event.delta.parse_status == ToolCallParseStatus.started
last = grouped[ChatCompletionResponseEventType.progress][-1]
# assert last.event.stop_reason == expected_stop_reason
assert last.event.delta.parse_status == ToolCallParseStatus.succeeded
assert isinstance(last.event.delta.tool_call, ToolCall)
call = last.event.delta.tool_call
assert call.tool_name == "get_weather"
assert "location" in call.arguments
assert "San Francisco" in call.arguments["location"]