llama-stack-mirror/llama_stack/providers/utils/inference/model_registry.py
Ashwin Bharambe 9436dd570d
feat: register embedding models for ollama, together, fireworks (#1190)
# What does this PR do?

We have support for embeddings in our Inference providers, but so far we
haven't done the final step of actually registering the known embedding
models and making sure they are extremely easy to use. This is one step
towards that.

## Test Plan

Run existing inference tests.

```bash

$ cd llama_stack/providers/tests/inference
$ pytest -s -v -k fireworks test_embeddings.py \
   --inference-model nomic-ai/nomic-embed-text-v1.5 --env EMBEDDING_DIMENSION=784
$  pytest -s -v -k together test_embeddings.py \
   --inference-model togethercomputer/m2-bert-80M-8k-retrieval --env EMBEDDING_DIMENSION=784
$ pytest -s -v -k ollama test_embeddings.py \
   --inference-model all-minilm:latest --env EMBEDDING_DIMENSION=784
```

The value of the EMBEDDING_DIMENSION isn't actually used in these tests,
it is merely used by the test fixtures to check if the model is an LLM
or Embedding.
2025-02-20 15:39:08 -08:00

106 lines
4.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Field
from llama_stack.apis.models.models import ModelType
from llama_stack.models.llama.sku_list import all_registered_models
from llama_stack.providers.datatypes import Model, ModelsProtocolPrivate
from llama_stack.providers.utils.inference import (
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR,
)
# TODO: this class is more confusing than useful right now. We need to make it
# more closer to the Model class.
class ProviderModelEntry(BaseModel):
provider_model_id: str
aliases: List[str] = Field(default_factory=list)
llama_model: Optional[str] = None
model_type: ModelType = ModelType.llm
metadata: Dict[str, Any] = Field(default_factory=dict)
def get_huggingface_repo(model_descriptor: str) -> Optional[str]:
for model in all_registered_models():
if model.descriptor() == model_descriptor:
return model.huggingface_repo
return None
def build_hf_repo_model_entry(provider_model_id: str, model_descriptor: str) -> ProviderModelEntry:
return ProviderModelEntry(
provider_model_id=provider_model_id,
aliases=[
get_huggingface_repo(model_descriptor),
],
llama_model=model_descriptor,
)
def build_model_entry(provider_model_id: str, model_descriptor: str) -> ProviderModelEntry:
return ProviderModelEntry(
provider_model_id=provider_model_id,
aliases=[],
llama_model=model_descriptor,
model_type=ModelType.llm,
)
class ModelRegistryHelper(ModelsProtocolPrivate):
def __init__(self, model_entries: List[ProviderModelEntry]):
self.alias_to_provider_id_map = {}
self.provider_id_to_llama_model_map = {}
for entry in model_entries:
for alias in entry.aliases:
self.alias_to_provider_id_map[alias] = entry.provider_model_id
# also add a mapping from provider model id to itself for easy lookup
self.alias_to_provider_id_map[entry.provider_model_id] = entry.provider_model_id
if entry.llama_model:
self.alias_to_provider_id_map[entry.llama_model] = entry.provider_model_id
self.provider_id_to_llama_model_map[entry.provider_model_id] = entry.llama_model
def get_provider_model_id(self, identifier: str) -> Optional[str]:
return self.alias_to_provider_id_map.get(identifier, None)
def get_llama_model(self, provider_model_id: str) -> Optional[str]:
return self.provider_id_to_llama_model_map.get(provider_model_id, None)
async def register_model(self, model: Model) -> Model:
if model.model_type == ModelType.embedding:
# embedding models are always registered by their provider model id and does not need to be mapped to a llama model
provider_resource_id = model.provider_resource_id
else:
provider_resource_id = self.get_provider_model_id(model.provider_resource_id)
if provider_resource_id:
model.provider_resource_id = provider_resource_id
else:
if model.metadata.get("llama_model") is None:
raise ValueError(
f"Model '{model.provider_resource_id}' is not available and no llama_model was specified in metadata. "
"Please specify a llama_model in metadata or use a supported model identifier"
)
existing_llama_model = self.get_llama_model(model.provider_resource_id)
if existing_llama_model:
if existing_llama_model != model.metadata["llama_model"]:
raise ValueError(
f"Provider model id '{model.provider_resource_id}' is already registered to a different llama model: '{existing_llama_model}'"
)
else:
if model.metadata["llama_model"] not in ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR:
raise ValueError(
f"Invalid llama_model '{model.metadata['llama_model']}' specified in metadata. "
f"Must be one of: {', '.join(ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR.keys())}"
)
self.provider_id_to_llama_model_map[model.provider_resource_id] = (
ALL_HUGGINGFACE_REPOS_TO_MODEL_DESCRIPTOR[model.metadata["llama_model"]]
)
return model