llama-stack-mirror/llama_stack/apis/memory/client.py
Ashwin Bharambe 9487ad8294
API Updates (#73)
* API Keys passed from Client instead of distro configuration

* delete distribution registry

* Rename the "package" word away

* Introduce a "Router" layer for providers

Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:

- The inference API should be a routing layer over inference providers,
  routed using the "model" key
- The memory banks API is another instance where various memory bank
  types will be provided by independent providers (e.g., a vector store
  is served by Chroma while a keyvalue memory can be served by Redis or
  PGVector)

This commit introduces a generalized routing layer for this purpose.

* update `apis_to_serve`

* llama_toolchain -> llama_stack

* Codemod from llama_toolchain -> llama_stack

- added providers/registry
- cleaned up api/ subdirectories and moved impls away
- restructured api/api.py
- from llama_stack.apis.<api> import foo should work now
- update imports to do llama_stack.apis.<api>
- update many other imports
- added __init__, fixed some registry imports
- updated registry imports
- create_agentic_system -> create_agent
- AgenticSystem -> Agent

* Moved some stuff out of common/; re-generated OpenAPI spec

* llama-toolchain -> llama-stack (hyphens)

* add control plane API

* add redis adapter + sqlite provider

* move core -> distribution

* Some more toolchain -> stack changes

* small naming shenanigans

* Removing custom tool and agent utilities and moving them client side

* Move control plane to distribution server for now

* Remove control plane from API list

* no codeshield dependency randomly plzzzzz

* Add "fire" as a dependency

* add back event loggers

* stack configure fixes

* use brave instead of bing in the example client

* add init file so it gets packaged

* add init files so it gets packaged

* Update MANIFEST

* bug fix

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Xi Yan <xiyan@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-09-17 19:51:35 -07:00

196 lines
5.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import asyncio
import json
import os
from pathlib import Path
from typing import Any, Dict, List, Optional
import fire
import httpx
from llama_stack.distribution.datatypes import RemoteProviderConfig
from termcolor import cprint
from .memory import * # noqa: F403
from .common.file_utils import data_url_from_file
async def get_client_impl(config: RemoteProviderConfig, _deps: Any) -> Memory:
return MemoryClient(config.url)
class MemoryClient(Memory):
def __init__(self, base_url: str):
self.base_url = base_url
async def initialize(self) -> None:
pass
async def shutdown(self) -> None:
pass
async def get_memory_bank(self, bank_id: str) -> Optional[MemoryBank]:
async with httpx.AsyncClient() as client:
r = await client.get(
f"{self.base_url}/memory_banks/get",
params={
"bank_id": bank_id,
},
headers={"Content-Type": "application/json"},
timeout=20,
)
r.raise_for_status()
d = r.json()
if not d:
return None
return MemoryBank(**d)
async def create_memory_bank(
self,
name: str,
config: MemoryBankConfig,
url: Optional[URL] = None,
) -> MemoryBank:
async with httpx.AsyncClient() as client:
r = await client.post(
f"{self.base_url}/memory_banks/create",
json={
"name": name,
"config": config.dict(),
"url": url,
},
headers={"Content-Type": "application/json"},
timeout=20,
)
r.raise_for_status()
d = r.json()
if not d:
return None
return MemoryBank(**d)
async def insert_documents(
self,
bank_id: str,
documents: List[MemoryBankDocument],
) -> None:
async with httpx.AsyncClient() as client:
r = await client.post(
f"{self.base_url}/memory_bank/insert",
json={
"bank_id": bank_id,
"documents": [d.dict() for d in documents],
},
headers={"Content-Type": "application/json"},
timeout=20,
)
r.raise_for_status()
async def query_documents(
self,
bank_id: str,
query: InterleavedTextMedia,
params: Optional[Dict[str, Any]] = None,
) -> QueryDocumentsResponse:
async with httpx.AsyncClient() as client:
r = await client.post(
f"{self.base_url}/memory_bank/query",
json={
"bank_id": bank_id,
"query": query,
"params": params,
},
headers={"Content-Type": "application/json"},
timeout=20,
)
r.raise_for_status()
return QueryDocumentsResponse(**r.json())
async def run_main(host: str, port: int, stream: bool):
client = MemoryClient(f"http://{host}:{port}")
# create a memory bank
bank = await client.create_memory_bank(
name="test_bank",
config=VectorMemoryBankConfig(
bank_id="test_bank",
embedding_model="dragon-roberta-query-2",
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
cprint(json.dumps(bank.dict(), indent=4), "green")
retrieved_bank = await client.get_memory_bank(bank.bank_id)
assert retrieved_bank is not None
assert retrieved_bank.config.embedding_model == "dragon-roberta-query-2"
urls = [
"memory_optimizations.rst",
"chat.rst",
"llama3.rst",
"datasets.rst",
"qat_finetune.rst",
"lora_finetune.rst",
]
documents = [
MemoryBankDocument(
document_id=f"num-{i}",
content=URL(
uri=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}"
),
mime_type="text/plain",
)
for i, url in enumerate(urls)
]
this_dir = os.path.dirname(__file__)
files = [Path(this_dir).parent.parent / "CONTRIBUTING.md"]
documents += [
MemoryBankDocument(
document_id=f"num-{i}",
content=data_url_from_file(path),
)
for i, path in enumerate(files)
]
# insert some documents
await client.insert_documents(
bank_id=bank.bank_id,
documents=documents,
)
# query the documents
response = await client.query_documents(
bank_id=bank.bank_id,
query=[
"How do I use Lora?",
],
)
for chunk, score in zip(response.chunks, response.scores):
print(f"Score: {score}")
print(f"Chunk:\n========\n{chunk}\n========\n")
response = await client.query_documents(
bank_id=bank.bank_id,
query=[
"Tell me more about llama3 and torchtune",
],
)
for chunk, score in zip(response.chunks, response.scores):
print(f"Score: {score}")
print(f"Chunk:\n========\n{chunk}\n========\n")
def main(host: str, port: int, stream: bool = True):
asyncio.run(run_main(host, port, stream))
if __name__ == "__main__":
fire.Fire(main)