llama-stack-mirror/llama_stack/providers/remote/inference/databricks/databricks.py
Sébastien Han 9b7eecebcf
Some checks failed
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 39s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 12s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 50s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 14s
Integration Tests / test-matrix (library, 3.12, safety) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 13s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 1m10s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.13, safety) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 16s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 14s
Integration Tests / test-matrix (server, 3.12, inference) (push) Failing after 12s
Integration Tests / test-matrix (server, 3.12, datasets) (push) Failing after 14s
Integration Tests / test-matrix (server, 3.12, agents) (push) Failing after 17s
Integration Tests / test-matrix (server, 3.12, inspect) (push) Failing after 10s
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 1m30s
Integration Tests / test-matrix (server, 3.12, safety) (push) Failing after 13s
Integration Tests / test-matrix (server, 3.12, providers) (push) Failing after 15s
Integration Tests / test-matrix (server, 3.12, scoring) (push) Failing after 13s
Integration Tests / test-matrix (server, 3.13, agents) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.12, vector_io) (push) Failing after 12s
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, post_training) (push) Failing after 25s
Integration Tests / test-matrix (server, 3.13, inspect) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 11s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.13, safety) (push) Failing after 25s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 27s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 7s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 9s
Test Llama Stack Build / generate-matrix (push) Successful in 14s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 16s
Test Llama Stack Build / build-single-provider (push) Failing after 14s
Integration Tests / test-matrix (server, 3.12, tool_runtime) (push) Failing after 1m7s
Update ReadTheDocs / update-readthedocs (push) Failing after 12s
Unit Tests / unit-tests (3.13) (push) Failing after 14s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 29s
Test External Providers / test-external-providers (venv) (push) Failing after 17s
Test Llama Stack Build / build (push) Failing after 13s
Unit Tests / unit-tests (3.12) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 35s
Python Package Build Test / build (3.12) (push) Failing after 31s
Python Package Build Test / build (3.13) (push) Failing after 29s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 34s
Pre-commit / pre-commit (push) Successful in 1m24s
ci: test safety with starter (#2628)
# What does this PR do?

We are now testing the safety capability with the starter image. This
includes a few changes:

* Enable the safety integration test
* Relax the shield model requirements from llama-guard to make it work
  with llama-guard3:8b coming from Ollama
* Expose a shield for each inference provider in the starter distro. The
  shield will only be registered if the provider is enabled.

Closes: https://github.com/meta-llama/llama-stack/issues/2528

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-07-09 16:53:50 +02:00

168 lines
5.3 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from collections.abc import AsyncGenerator
from openai import OpenAI
from llama_stack.apis.common.content_types import (
InterleavedContent,
InterleavedContentItem,
)
from llama_stack.apis.inference import (
ChatCompletionRequest,
ChatCompletionResponse,
EmbeddingsResponse,
EmbeddingTaskType,
Inference,
LogProbConfig,
Message,
OpenAIEmbeddingsResponse,
ResponseFormat,
SamplingParams,
TextTruncation,
ToolChoice,
ToolConfig,
ToolDefinition,
ToolPromptFormat,
)
from llama_stack.models.llama.sku_types import CoreModelId
from llama_stack.providers.utils.inference.model_registry import (
ModelRegistryHelper,
build_hf_repo_model_entry,
)
from llama_stack.providers.utils.inference.openai_compat import (
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
get_sampling_options,
process_chat_completion_response,
process_chat_completion_stream_response,
)
from llama_stack.providers.utils.inference.prompt_adapter import (
chat_completion_request_to_prompt,
)
from .config import DatabricksImplConfig
SAFETY_MODELS_ENTRIES = []
# https://docs.databricks.com/aws/en/machine-learning/model-serving/foundation-model-overview
MODEL_ENTRIES = [
build_hf_repo_model_entry(
"databricks-meta-llama-3-1-70b-instruct",
CoreModelId.llama3_1_70b_instruct.value,
),
build_hf_repo_model_entry(
"databricks-meta-llama-3-1-405b-instruct",
CoreModelId.llama3_1_405b_instruct.value,
),
] + SAFETY_MODELS_ENTRIES
class DatabricksInferenceAdapter(
ModelRegistryHelper,
Inference,
OpenAIChatCompletionToLlamaStackMixin,
OpenAICompletionToLlamaStackMixin,
):
def __init__(self, config: DatabricksImplConfig) -> None:
ModelRegistryHelper.__init__(self, model_entries=MODEL_ENTRIES)
self.config = config
async def initialize(self) -> None:
return
async def shutdown(self) -> None:
pass
async def completion(
self,
model: str,
content: InterleavedContent,
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
) -> AsyncGenerator:
raise NotImplementedError()
async def chat_completion(
self,
model: str,
messages: list[Message],
sampling_params: SamplingParams | None = None,
response_format: ResponseFormat | None = None,
tools: list[ToolDefinition] | None = None,
tool_choice: ToolChoice | None = ToolChoice.auto,
tool_prompt_format: ToolPromptFormat | None = None,
stream: bool | None = False,
logprobs: LogProbConfig | None = None,
tool_config: ToolConfig | None = None,
) -> AsyncGenerator:
if sampling_params is None:
sampling_params = SamplingParams()
request = ChatCompletionRequest(
model=model,
messages=messages,
sampling_params=sampling_params,
tools=tools or [],
stream=stream,
logprobs=logprobs,
tool_config=tool_config,
)
client = OpenAI(base_url=self.config.url, api_key=self.config.api_token)
if stream:
return self._stream_chat_completion(request, client)
else:
return await self._nonstream_chat_completion(request, client)
async def _nonstream_chat_completion(
self, request: ChatCompletionRequest, client: OpenAI
) -> ChatCompletionResponse:
params = self._get_params(request)
r = client.completions.create(**params)
return process_chat_completion_response(r, request)
async def _stream_chat_completion(self, request: ChatCompletionRequest, client: OpenAI) -> AsyncGenerator:
params = self._get_params(request)
async def _to_async_generator():
s = client.completions.create(**params)
for chunk in s:
yield chunk
stream = _to_async_generator()
async for chunk in process_chat_completion_stream_response(stream, request):
yield chunk
def _get_params(self, request: ChatCompletionRequest) -> dict:
return {
"model": request.model,
"prompt": chat_completion_request_to_prompt(request, self.get_llama_model(request.model)),
"stream": request.stream,
**get_sampling_options(request.sampling_params),
}
async def embeddings(
self,
model_id: str,
contents: list[str] | list[InterleavedContentItem],
text_truncation: TextTruncation | None = TextTruncation.none,
output_dimension: int | None = None,
task_type: EmbeddingTaskType | None = None,
) -> EmbeddingsResponse:
raise NotImplementedError()
async def openai_embeddings(
self,
model: str,
input: str | list[str],
encoding_format: str | None = "float",
dimensions: int | None = None,
user: str | None = None,
) -> OpenAIEmbeddingsResponse:
raise NotImplementedError()