mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 02:53:30 +00:00
This PR does the following: 1) adds the ability to generate embeddings in all supported inference providers. 2) Moves all the memory providers to use the inference API and improved the memory tests to setup the inference stack correctly and use the embedding models This is a merge from #589 and #598
218 lines
6.9 KiB
Python
218 lines
6.9 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import base64
|
|
import io
|
|
import json
|
|
import logging
|
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import faiss
|
|
|
|
import numpy as np
|
|
from numpy.typing import NDArray
|
|
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
from llama_stack.apis.memory import * # noqa: F403
|
|
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
|
from llama_stack.providers.utils.kvstore import kvstore_impl
|
|
|
|
from llama_stack.providers.utils.memory.vector_store import (
|
|
BankWithIndex,
|
|
EmbeddingIndex,
|
|
)
|
|
|
|
from .config import FaissImplConfig
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
MEMORY_BANKS_PREFIX = "memory_banks:v2::"
|
|
FAISS_INDEX_PREFIX = "faiss_index:v2::"
|
|
|
|
|
|
class FaissIndex(EmbeddingIndex):
|
|
id_by_index: Dict[int, str]
|
|
chunk_by_index: Dict[int, str]
|
|
|
|
def __init__(self, dimension: int, kvstore=None, bank_id: str = None):
|
|
self.index = faiss.IndexFlatL2(dimension)
|
|
self.id_by_index = {}
|
|
self.chunk_by_index = {}
|
|
self.kvstore = kvstore
|
|
self.bank_id = bank_id
|
|
|
|
@classmethod
|
|
async def create(cls, dimension: int, kvstore=None, bank_id: str = None):
|
|
instance = cls(dimension, kvstore, bank_id)
|
|
await instance.initialize()
|
|
return instance
|
|
|
|
async def initialize(self) -> None:
|
|
if not self.kvstore:
|
|
return
|
|
|
|
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
|
|
stored_data = await self.kvstore.get(index_key)
|
|
|
|
if stored_data:
|
|
data = json.loads(stored_data)
|
|
self.id_by_index = {int(k): v for k, v in data["id_by_index"].items()}
|
|
self.chunk_by_index = {
|
|
int(k): Chunk.model_validate_json(v)
|
|
for k, v in data["chunk_by_index"].items()
|
|
}
|
|
|
|
buffer = io.BytesIO(base64.b64decode(data["faiss_index"]))
|
|
self.index = faiss.deserialize_index(np.loadtxt(buffer, dtype=np.uint8))
|
|
|
|
async def _save_index(self):
|
|
if not self.kvstore or not self.bank_id:
|
|
return
|
|
|
|
np_index = faiss.serialize_index(self.index)
|
|
buffer = io.BytesIO()
|
|
np.savetxt(buffer, np_index)
|
|
data = {
|
|
"id_by_index": self.id_by_index,
|
|
"chunk_by_index": {
|
|
k: v.model_dump_json() for k, v in self.chunk_by_index.items()
|
|
},
|
|
"faiss_index": base64.b64encode(buffer.getvalue()).decode("utf-8"),
|
|
}
|
|
|
|
index_key = f"{FAISS_INDEX_PREFIX}{self.bank_id}"
|
|
await self.kvstore.set(key=index_key, value=json.dumps(data))
|
|
|
|
async def delete(self):
|
|
if not self.kvstore or not self.bank_id:
|
|
return
|
|
|
|
await self.kvstore.delete(f"{FAISS_INDEX_PREFIX}{self.bank_id}")
|
|
|
|
async def add_chunks(self, chunks: List[Chunk], embeddings: NDArray):
|
|
# Add dimension check
|
|
embedding_dim = (
|
|
embeddings.shape[1] if len(embeddings.shape) > 1 else embeddings.shape[0]
|
|
)
|
|
if embedding_dim != self.index.d:
|
|
raise ValueError(
|
|
f"Embedding dimension mismatch. Expected {self.index.d}, got {embedding_dim}"
|
|
)
|
|
|
|
indexlen = len(self.id_by_index)
|
|
for i, chunk in enumerate(chunks):
|
|
self.chunk_by_index[indexlen + i] = chunk
|
|
self.id_by_index[indexlen + i] = chunk.document_id
|
|
|
|
self.index.add(np.array(embeddings).astype(np.float32))
|
|
|
|
# Save updated index
|
|
await self._save_index()
|
|
|
|
async def query(
|
|
self, embedding: NDArray, k: int, score_threshold: float
|
|
) -> QueryDocumentsResponse:
|
|
distances, indices = self.index.search(
|
|
embedding.reshape(1, -1).astype(np.float32), k
|
|
)
|
|
|
|
chunks = []
|
|
scores = []
|
|
for d, i in zip(distances[0], indices[0]):
|
|
if i < 0:
|
|
continue
|
|
chunks.append(self.chunk_by_index[int(i)])
|
|
scores.append(1.0 / float(d))
|
|
|
|
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
|
|
|
|
|
class FaissMemoryImpl(Memory, MemoryBanksProtocolPrivate):
|
|
def __init__(self, config: FaissImplConfig, inference_api: Api.inference) -> None:
|
|
self.config = config
|
|
self.inference_api = inference_api
|
|
self.cache = {}
|
|
self.kvstore = None
|
|
|
|
async def initialize(self) -> None:
|
|
self.kvstore = await kvstore_impl(self.config.kvstore)
|
|
# Load existing banks from kvstore
|
|
start_key = MEMORY_BANKS_PREFIX
|
|
end_key = f"{MEMORY_BANKS_PREFIX}\xff"
|
|
stored_banks = await self.kvstore.range(start_key, end_key)
|
|
|
|
for bank_data in stored_banks:
|
|
bank = VectorMemoryBank.model_validate_json(bank_data)
|
|
index = BankWithIndex(
|
|
bank,
|
|
await FaissIndex.create(
|
|
bank.embedding_dimension, self.kvstore, bank.identifier
|
|
),
|
|
self.inference_api,
|
|
)
|
|
self.cache[bank.identifier] = index
|
|
|
|
async def shutdown(self) -> None:
|
|
# Cleanup if needed
|
|
pass
|
|
|
|
async def register_memory_bank(
|
|
self,
|
|
memory_bank: MemoryBank,
|
|
) -> None:
|
|
assert (
|
|
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
|
), f"Only vector banks are supported {memory_bank.type}"
|
|
|
|
# Store in kvstore
|
|
key = f"{MEMORY_BANKS_PREFIX}{memory_bank.identifier}"
|
|
await self.kvstore.set(
|
|
key=key,
|
|
value=memory_bank.model_dump_json(),
|
|
)
|
|
|
|
# Store in cache
|
|
self.cache[memory_bank.identifier] = BankWithIndex(
|
|
memory_bank,
|
|
await FaissIndex.create(
|
|
memory_bank.embedding_dimension, self.kvstore, memory_bank.identifier
|
|
),
|
|
self.inference_api,
|
|
)
|
|
|
|
async def list_memory_banks(self) -> List[MemoryBank]:
|
|
return [i.bank for i in self.cache.values()]
|
|
|
|
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
|
await self.cache[memory_bank_id].index.delete()
|
|
del self.cache[memory_bank_id]
|
|
await self.kvstore.delete(f"{MEMORY_BANKS_PREFIX}{memory_bank_id}")
|
|
|
|
async def insert_documents(
|
|
self,
|
|
bank_id: str,
|
|
documents: List[MemoryBankDocument],
|
|
ttl_seconds: Optional[int] = None,
|
|
) -> None:
|
|
index = self.cache.get(bank_id)
|
|
if index is None:
|
|
raise ValueError(f"Bank {bank_id} not found. found: {self.cache.keys()}")
|
|
|
|
await index.insert_documents(documents)
|
|
|
|
async def query_documents(
|
|
self,
|
|
bank_id: str,
|
|
query: InterleavedTextMedia,
|
|
params: Optional[Dict[str, Any]] = None,
|
|
) -> QueryDocumentsResponse:
|
|
index = self.cache.get(bank_id)
|
|
if index is None:
|
|
raise ValueError(f"Bank {bank_id} not found")
|
|
|
|
return await index.query_documents(query, params)
|