mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-08 03:00:56 +00:00
155 lines
3.8 KiB
Python
155 lines
3.8 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, Generic, Iterator, Literal, Protocol, TypeVar, Union
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
from typing_extensions import Annotated
|
|
|
|
# A sample (row) from raw dataset
|
|
TDatasetSample = TypeVar("TDatasetSample")
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetSample(BaseModel): ...
|
|
|
|
|
|
@json_schema_type
|
|
class DictSample(DatasetSample):
|
|
data: Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class ProcessedDictSample(DatasetSample):
|
|
data: Dict[str, Any]
|
|
preprocessed: Dict[str, Any]
|
|
prediction: Dict[str, Any]
|
|
postprocessed: Dict[str, Any]
|
|
|
|
|
|
# # A sample (row) after preprocessing the raw dataset
|
|
# TPreprocessedSample = TypeVar("TPreprocessedSample")
|
|
|
|
# @json_schema_type
|
|
# class PreprocessedSample(BaseModel): ...
|
|
|
|
# @json_schema_type
|
|
# class InferencePreprocessedSample(PreprocessedSample):
|
|
# # TODO: either keep it generic or specific to inference API
|
|
# # messages: List[Message]
|
|
# data: Dict[str, Any]
|
|
|
|
# # A sample (row) from model prediction output
|
|
# TPredictionSample = TypeVar("TPredictionSample")
|
|
|
|
# @json_schema_type
|
|
# class PredictionSample(BaseModel): ...
|
|
|
|
# @json_schema_type
|
|
# class InferencePredictionSample(PredictionSample):
|
|
# data: Dict[str, Any]
|
|
|
|
|
|
# # A sample (row) from post-processed output
|
|
# TPostprocessedSample = TypeVar("TPostprocessedSample")
|
|
|
|
# @json_schema_type
|
|
# class PostprocessedSample(BaseModel): ...
|
|
|
|
# @json_schema_type
|
|
# class InferencePostprocessedSample(PredictionSample):
|
|
# data: Dict[str, Any]
|
|
|
|
|
|
@json_schema_type
|
|
class DatasetType(Enum):
|
|
custom = "custom"
|
|
huggingface = "huggingface"
|
|
|
|
|
|
@json_schema_type
|
|
class HuggingfaceDatasetDef(BaseModel):
|
|
type: Literal[DatasetType.huggingface.value] = DatasetType.huggingface.value
|
|
identifier: str = Field(
|
|
description="A unique name for the dataset",
|
|
)
|
|
dataset_name: str = Field(
|
|
description="The name of the dataset into HF (e.g. hellawag)",
|
|
)
|
|
kwargs: Dict[str, Any] = Field(
|
|
description="Any additional arguments to get Huggingface (e.g. split, trust_remote_code)",
|
|
default_factory=dict,
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class CustomDatasetDef(BaseModel):
|
|
type: Literal[DatasetType.custom.value] = DatasetType.custom.value
|
|
identifier: str = Field(
|
|
description="A unique name for the dataset",
|
|
)
|
|
url: str = Field(
|
|
description="The URL to the dataset",
|
|
)
|
|
|
|
|
|
DatasetDef = Annotated[
|
|
Union[
|
|
HuggingfaceDatasetDef,
|
|
CustomDatasetDef,
|
|
],
|
|
Field(discriminator="type"),
|
|
]
|
|
|
|
|
|
class BaseDataset(ABC, Generic[TDatasetSample]):
|
|
def __init__(self) -> None:
|
|
self.type: str = self.__class__.__name__
|
|
|
|
@property
|
|
@abstractmethod
|
|
def dataset_id(self) -> str:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __iter__(self) -> Iterator[TDatasetSample]:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __str__(self) -> str:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __len__(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def load(self) -> None:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class Datasets(Protocol):
|
|
@webmethod(route="/datasets/create")
|
|
def create_dataset(
|
|
self,
|
|
dataset: DatasetDef,
|
|
) -> None: ...
|
|
|
|
@webmethod(route="/datasets/get")
|
|
def get_dataset(
|
|
self,
|
|
dataset_identifier: str,
|
|
) -> DatasetDef: ...
|
|
|
|
@webmethod(route="/datasets/delete")
|
|
def delete_dataset(
|
|
self,
|
|
dataset_uuid: str,
|
|
) -> None: ...
|