mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-28 10:54:19 +00:00
## What does this PR do? This is a long-pending change and particularly important to get done now. Specifically: - we cannot "localize" (aka download) any URLs from media attachments anywhere near our modeling code. it must be done within llama-stack. - `PIL.Image` is infesting all our APIs via `ImageMedia -> InterleavedTextMedia` and that cannot be right at all. Anything in the API surface must be "naturally serializable". We need a standard `{ type: "image", image_url: "<...>" }` which is more extensible - `UserMessage`, `SystemMessage`, etc. are moved completely to llama-stack from the llama-models repository. See https://github.com/meta-llama/llama-models/pull/244 for the corresponding PR in llama-models. ## Test Plan ```bash cd llama_stack/providers/tests pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py pytest -s -v -k chroma memory/test_memory.py \ --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar pytest -s -v -k fireworks agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct ``` Updated the client sdk (see PR ...), installed the SDK in the same environment and then ran the SDK tests: ```bash cd tests/client-sdk LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py # this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py ```
72 lines
2 KiB
Python
72 lines
2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import Any, Dict, List, Literal, Optional, Protocol
|
|
|
|
from llama_models.schema_utils import json_schema_type, webmethod
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
from llama_stack.apis.common.content_types import URL
|
|
|
|
from llama_stack.apis.common.type_system import ParamType
|
|
from llama_stack.apis.resource import Resource, ResourceType
|
|
|
|
|
|
class CommonDatasetFields(BaseModel):
|
|
dataset_schema: Dict[str, ParamType]
|
|
url: URL
|
|
metadata: Dict[str, Any] = Field(
|
|
default_factory=dict,
|
|
description="Any additional metadata for this dataset",
|
|
)
|
|
|
|
|
|
@json_schema_type
|
|
class Dataset(CommonDatasetFields, Resource):
|
|
type: Literal[ResourceType.dataset.value] = ResourceType.dataset.value
|
|
|
|
@property
|
|
def dataset_id(self) -> str:
|
|
return self.identifier
|
|
|
|
@property
|
|
def provider_dataset_id(self) -> str:
|
|
return self.provider_resource_id
|
|
|
|
|
|
class DatasetInput(CommonDatasetFields, BaseModel):
|
|
dataset_id: str
|
|
provider_id: Optional[str] = None
|
|
provider_dataset_id: Optional[str] = None
|
|
|
|
|
|
class Datasets(Protocol):
|
|
@webmethod(route="/datasets/register", method="POST")
|
|
async def register_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
dataset_schema: Dict[str, ParamType],
|
|
url: URL,
|
|
provider_dataset_id: Optional[str] = None,
|
|
provider_id: Optional[str] = None,
|
|
metadata: Optional[Dict[str, Any]] = None,
|
|
) -> None: ...
|
|
|
|
@webmethod(route="/datasets/get", method="GET")
|
|
async def get_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> Optional[Dataset]: ...
|
|
|
|
@webmethod(route="/datasets/list", method="GET")
|
|
async def list_datasets(self) -> List[Dataset]: ...
|
|
|
|
@webmethod(route="/datasets/unregister", method="POST")
|
|
async def unregister_dataset(
|
|
self,
|
|
dataset_id: str,
|
|
) -> None: ...
|